TIPOLOGÍA DE FALLAS EN GENERADORES SÍNCRONOS HIDRÁULICOS DE LA EMPRESA DE ENERGÍA DEL PACIFICO

TRABAJO DE GRADO

Presentado Por:
Michael Steven Castillo Monsalve
Fernando Garzón Vizcayo

Directores:
Gladys Caicedo Delgado.
Ingeniera Electricista Ph.D
Francisco Javier Murcia.
Ingeniero Electricista M.Sc

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA
SANTIAGO DE CALI
2016
TIPOLOGÍA DE FALLAS EN GENERADORES SÍNCRONOS HIDRÁULICOS
DE LA EMPRESA DE ENERGÍA DEL PACIFICO

MICHAEL STEVEN CASTILLO MONSALVE
FERNANDO GARZÓN VIZCAYO

UNIVERSIDAD DEL VALLE
FACULTAD DE INGENIERÍA
ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA
SANTIAGO DE CALI
2016
TIPOLOGÍA DE FALLAS EN GENERADORES SÍNCRONOS HIDRÁULICOS
DE LA EMPRESA DE ENERGÍA DEL PACIFICO

MICHAEL STEVEN CASTILLO MONSALVE
FERNANDO GARZÓN VIZCAYO

Directores:
Gladys Caicedo Delgado. Ingeniera Electricista Ph.D
Francisco Javier Murcia. Ingeniero Electricista M.Sc

UNIVERSIDAD DEL VALLE
FACULTAD DE INGENIERÍA
ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA
SANTIAGO DE CALI
2016
<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN</td>
<td></td>
<td>1-1</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td></td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>Justificación del problema</td>
<td>1-15</td>
</tr>
<tr>
<td>Objetivos</td>
<td></td>
<td>1-16</td>
</tr>
<tr>
<td>Objetivo general</td>
<td></td>
<td>1-16</td>
</tr>
<tr>
<td>Objetivos específicos</td>
<td></td>
<td>1-16</td>
</tr>
<tr>
<td>1. PARTES DEL GENERADOR SINCÓRÓNICO HIDRÁULICO</td>
<td></td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>1.1 ROTOR DE POLOS SALIENTES</td>
<td>1-19</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Polo del rotor</td>
<td>1-21</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Puentes del rotor</td>
<td>1-25</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Elementos de sujeción del devanado de campo</td>
<td>1-26</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Devanado amortiguador</td>
<td>1-27</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Eje</td>
<td>1-28</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Cojinete</td>
<td>1-28</td>
</tr>
<tr>
<td>1.1.7</td>
<td>Anillos deslizantes</td>
<td>1-30</td>
</tr>
<tr>
<td>1.1.8</td>
<td>Escobillas y porta-escobillas</td>
<td>1-31</td>
</tr>
<tr>
<td>1.1.9</td>
<td>Estrella o araña</td>
<td>1-31</td>
</tr>
<tr>
<td>1.1.10</td>
<td>Rotor intermedio o Llanta polar</td>
<td>1-32</td>
</tr>
<tr>
<td>1.2 ESTÁTOR DE MÁQUINA DE POLOS SALIENTES</td>
<td>1-33</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Carcasa</td>
<td>1-35</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Núcleo del estátor</td>
<td>1-35</td>
</tr>
</tbody>
</table>
1.2.3 Devanado del estator
1.2.4 Cunas del estator
1.2.5 Sistema de aislamiento del devanado
Diseño eléctrico del aislamiento a tierra
Diseño térmico del aislamiento a tierra
Diseño mecánico del aislamiento a tierra

1.3 MÉTODOS DE PUESTA A TIERRA DE GENERADORES
1.3.1 Transformador de puesta a tierra
1.3.2 Sistema de puesta a tierra con alta resistencia a través de un transformador de distribución
1.3.3 Sistema de puesta a tierra de alta resistencia a tierra con un resistor neutro-tierra
1.3.4 Sistema de puesta a tierra de baja resistencia a tierra con un resistor Neutro-tierra

2. FALLAS EN EL ROTOR DE MÁQUINAS SÍNCRONAS
2.1 FALLAS MECÁNICAS EN EL ROTOR DE MÁQUINAS SÍNCRONAS
2.1.1 Desalineación de ejes del generador y la turbina
2.1.2 Desequilibrio de rotor del generador
2.1.3 Excentricidad de rotor de generadores síncronos
2.1.4 Fallas en cojinete
2.1.5 Falla en el puente del rotor
2.1.6 Ejes doblados
2.1.7 Grietas en ejes
2.1.8 Fallas en anillos deslizantes

2.2 FALLAS ELÉCTRICAS EN EL ROTOR DE MÁQUINAS SÍNCRONAS
2.2.1 Falla de cortocircuito entre espiras del devanado de campo. 2-70
2.2.2 Falla de pérdida de excitación. ... 2-72
2.2.3 Falla a tierra del devanado de campo. 2-72
2.2.4 Falla de ruptura de barra en el devanado amortiguador. 2-73
2.2.5 Falla de sobre calentamiento en devanado amortiguador y zapata polar. 2-74

2.3 FALLAS EN EL SISTEMA DE AISLAMIENTO DEL ROTOR 2-77
2.3.1 Envejecimiento térmico de materiales aislantes del rotor. 2-77

3. FALLAS EN EL ESTÁTOR DE MÁQUINAS SÍNCRONAS.................. 3-80
3.1 FALLAS MECÁNICAS... 3-81
3.1.1 Desajuste de las bobinas del estátor en las ranuras................. 3-81
3.1.2 Contaminación del estátor del generador. 3-82
3.1.3 Desconexión o falla de las resistencias equipotenciales. 3-83
3.1.4 Defectos en las conexiones o en la unión de los cabezales del devanado del estátor. ... 3-84
3.1.5 Aflojamiento del núcleo por pérdida de sujeción mecánica del estátor. 3-84
3.1.6 Daños en el estátor del generador por condiciones anormales de operación... 3-85
3.1.7 Fallas en el núcleo del estátor. ... 3-86

3.2 FALLAS POR DAÑO O DETERIORO DE AISLAMIENTO DEL ESTÁTOR ... 3-89
3.2.1 Envejecimiento térmico de materiales aislantes del estátor. 3-89
3.2.2 Fallas eléctricas en el estátor de máquinas síncronas................. 3-90
3.2.3 Descargas parciales en el devanado del estátor. 3-95

4. FALLAS EN ELEMENTOS DE CONEXIÓN A TIERRA DE GENERADORES SÍNCRONOS ... 4-98
4.1 FALLA DE CORTOCIRCUITO MONOFÁSICO EN GENERADORES .. 4-100

4.1.1 Generador sin puesta a tierra y sin falla monofásica, Caso 0 ... 4-102

4.1.2 Generador sin puesta a tierra y con falla monofásica, Caso 1 ... 4-104

4.1.3 Generador conectado rígidamente a tierra y con falla monofásica, Caso 2.4-106

4.1.4 Generador conectado mediante transformador de puesta a tierra y con falla monofásica, Caso 3. .. 4-108

4.2 FALLAS EN RESISTENCIAS DE PUESTA A TIERRA 4-112

4.2.1 Fallas mecánicas en resistencias de puesta a tierra 4-112

4.2.2 Fallas eléctricas en resistencias de puesta a tierra 4-114

4.3 FALLAS EN CONDUCTORES DE PUESTA A TIERRA 4-116

5. PROTECCIONES ASOCIADAS A CADA UNA DE LAS FALLAS 5-118
CONCLUSIONES .. 5-122
TRABAJOS FUTUROS ... 5-124
ANEXO .. 5-125
REFERENCIAS ... 5-126
LISTA DE FIGURAS

Figura 1. Vista en tercera dimensión de un Generador síncrono. 1-18
Figura 2. Rotor de polos salientes de generador de gran potencia. 1-19
Figura 3. Diagrama de Partes del rotor de máquinas síncronas. 1-20
Figura 4. Estructura del rotor de polos salientes de generador síncrono 1-20
Figura 5. Polo saliente de máquina síncrona. .. 1-21
Figura 6. Elementos del núcleo polar o cuerpo del polo. 1-22
Figura 7. Lámina del núcleo polar del polo saliente. 1-22
Figura 8. Diseño de polo saliente multilayer wire-wound. 1-23
Figura 9. Diseño de polo saliente strip-on-edge. 1-24
Figura 10. Tipos de devanados de campo. .. 1-25
Figura 11. Puente del rotor. ... 1-25
Figura 12. Posición de los devanados en los polos. 1-26
Figura 13. Soporte de bobina de campo de un par de polos. 1-27
Figura 14. Ubicación del devanado amortiguador. 1-27
Figura 15. Principio de funcionamiento de los cojinetes. 1-28
Figura 16. Tipos de cojinetes y sus partes. .. 1-29
Figura 17. Posición de los cojinetes en el soporte. 1-30
Figura 18. Anillos deslizantes de generador hidroeléctrico de 28,8 MVA. 1-31
Figura 19. Estrella y Rotor intermedio. .. 1-32
Figura 20. Estátor de un generador hidroeléctrico de 27.8 MVA. 1-33
Figura 21. Esquema de las partes constructivas de una máquina de polos salientes. ... 1-34
Figura 22. Estructura del estator de un Generador sincrono. 1-34
Figura 23. Carcasa del generador sincrono. .. 1-35
Figura 24. Núcleo del estator de un generador sincrono. 1-36
Figura 25. Devanado del estator de una máquina de polos salientes. 1-36
Figura 26. Materiales aislantes usados en la fabricación de una bobina...... 1-37
Figura 27. Sistema acuñado del estator. .. 1-37
Figura 28. Aislamiento del devanado del estator. .. 1-38
Figura 29. Aislamiento entre hilos del devanado del estator. 1-39
Figura 30. Transformador monofásico de puesta a tierra y NGR. 1-41
Figura 31. Conexión de transformador de puesta a tierra monofásico. 1-42
Figura 32. (a) Eje desalineado, Desalinación Angular. (b) Eje desalineado, Desalinación Paralela. ... 2-46
Figura 33. Desequilibrio estático del rotor de una máquina rotativa. 2-48
Figura 34. Desequilibrio dinámico en rotores. .. 2-49
Figura 35. Tipos de excentricidades (a) rotor centrado, (b) Excentricidad estática, (c) Excentricidad dinámica .. 2-50
Figura 36. Desgaste en cojinete debido a corrientes parasitas en el eje...... 2-53
Figura 37. Abrasión de la superficie del zapato de empuje. 2-54
Figura 38. Daño por óxido de estaño... 2-55
Figura 39. Calentamiento excesivo en cojinetes. (a) Cojinete de empuje, (b) Zapato de cojinete de empuje. ... 2-55
Figura 40. Formación de ampollas en cojinete guía. 2-56
Figura 41. Consecuencias en cojinetes por fatiga mecánica. (a) cojinete guía, (b) zapato del cojinete guía. .. 2-57
Figura 42. Falla en el puente del rotor. ... 2-58
Figura 43. Película desigual. ... 2-61
Figura 44. Imagen de escobilla sobre la superficie del anillo deslizante....... 2-62
Figura 45. Hilos sobre la superficie de anillo deslizante y escobilla........... 2-63
Figura 46. Anillos deslizantes con ranuras .. 2-64
Figura 47. Selectividad de escobillas... 2-65
Figura 48. Escobillas muy cortas que generan perdida de contacto con los anillos. ... 2-66
Figura 49. Corrosión en anillos deslizantes. ... 2-67
Figura 50. Deterioro del anillo deslizante, salto en escobillas. 2-68
Figura 51. Desgaste desigual de los anillos deslizantes................................. 2-69
Figura 52. Diagramas polares de 64 polos, el eje radial es la magnitud de flujo magnético y los polos magnéticos se aumentan en la circunferencia. (a) Rotor sin cortocircuitos. (b) Rotor con cortocircuitos. ... 2-71
Figura 53. Primera falla a tierra en el devanado de campo 2-73
Figura 54. Densidad de flujo en devanado amortiguador con a) Barras sanas b) Barras rotas. ... 2-74
Figura 55. Temperatura de las barras del devanado amortiguador de un generador sin carga... 2-75
Figura 56. Temperatura de las barras del devanado amortiguador de un el generador bajo carga ... 2-75
Figura 57. Falta de sobre calentamiento en barras del devanado amortiguador (a) Estrés térmico, (b) Estrés térmico, (c) Fractura en el anillo de conexión. 2-76
Figura 58. Deterioro del material aislante un puente del rotor. 2-79
Figura 59. Causas más comunes de fallas en el estátor de generadores y contaminantes externos ... 3-80
Figura 60. Deterioro que sufren las bobinas de un generador 3-82
Figura 61. Contaminación del estátor del generador 3-83

1-10
Figura 62. Reparación de un paquete de laminación ... 3-85
Figura 63. Daño causado en el núcleo del estator .. 3-87
Figura 64. Núcleo del estator dañado por sobrecalentamiento. 3-88
Figura 65. Contaminación del estator por agentes ambientales. 3-89
Figura 66. Consecuencias de cortocircuito ... 3-91
Figura 67. Cortocircuito entre espiras del estator .. 3-92
Figura 68. Esquema de falla entre espiras de fase del estator 3-92
Figura 69. Falla de fase a fase. .. 3-93
Figura 70. Falla entre fase a tierra causada por la fractura del devanado 3-95
Figura 71. Esquema de falla fase a tierra en el devanado del estator. 3-95
Figura 72. Esquema de descargas parciales ... 3-96
Figura 73. Tipos de descargas parciales .. 3-97
Figura 74. Resistencia de puesta a tierra ... 4-99
Figura 75. Puntos de falla en resistencia de conexión a tierra. 4-99
Figura 76. Circuito del sistema bajo estudio ... 4-101
Figura 77. Ondas de tensión en terminales del generador del caso 0........ 4-103
Figura 78. Ondas de corriente en terminales del generador del caso 0. 4-103
Figura 79. Onda de tensión en terminales del generador del caso 1 4-105
Figura 80. Ondas de corriente en terminales del generador del caso 1. 4-105
Figura 81. Ondas de tensión en terminales del generador caso 2............ 4-107
Figura 82. Ondas de corriente en terminales del generador caso 2. 4-107
Figura 83. Ondas de tensión en terminales del generador. 4-109
Figura 84. Ondas de corriente en terminales del generador. 4-109
Figura 85. Falla a tierra en la fase A, y camino de retorno de corriente en rojo. 4-112
Figura 86. Un punto de soldadura roto en una resistencia de puesta a tierra. .. 4-114

Figura 87. Falla parcial de los componentes de la NGR piezas cortocircuitadas de la NGR disminuyen su resistencia. ... 4-115

Figura 88. Falla de ruptura en resistencia de puesta a tierra causada por sobrecarga .. 4-115

Figura 89. Corrosión en conductores subterráneos.. 4-117
LISTA DE TABLAS

Tabla 4-1. Casos de estudio de fallas de puesta a tierra en generador síncrono. .. 4-100
Tabla 4-2. Parámetros del circuito del generador. .. 4-101
Tabla 4-3. Parámetros del circuito de la línea. ... 4-102
Tabla 4-4. Parámetros de la carga. ... 4-102
Tabla 4-5. Resultados de simulación de generador sin puesta a tierra y sin falla monofásica. .. 4-102
Tabla 4-6. Comparación de resultados del generador bajo condiciones de falla monofásica sin puesta a tierra con resultados sin falla. 4-104
Tabla 4-7. Comparación de resultados del generador bajo condiciones de falla monofásica conectado rígidamente a tierra con resultados sin falla. 4-106
Tabla 4-8. Comparación de resultados del generador bajo condiciones de falla monofásica conectado mediante transformador de puesta a tierra con resultados sin falla. ... 4-108
Tabla 5-9. Protecciones del rotor.[75] ... 5-118
Tabla 5-10. Protecciones del estátor.[76] ... 5-120
Tabla 5-11. Protecciones de elementos de puesta a tierra.[77] 5-121
RESUMEN

El generador síncrono es el elemento más relevante del sistema de potencia, debido a su función de convertir la energía mecánica en energía eléctrica. Gracias a él se pueden suplir las necesidades energéticas de los diferentes consumidores, ya sean industriales, residenciales o comerciales.

La operación de los generadores síncronos no debe ser interrumpida de forma inesperada, debido a que este tipo de procesos trae importantes pérdidas económicas y además sanciones por la no prestación del servicio. Pero este hecho es inevitable debido a la ocurrencia de fallas en el sistema eléctrico y en el mismo generador.

En reacción a este hecho se pueden tomar medidas con el objetivo de reducir la probabilidad de ocurrencia de estas fallas analizando sus características. Debido a la poca información relacionada con fallas en generadores, se hace necesaria la recopilación y descripción de las fallas más comunes en las diferentes partes del generador síncrono, trabajo realizado en el presente documento donde se clasifican las fallas de acuerdo a la parte en que ocurre y si es de naturaleza mecánica o eléctrica, además se muestran registros fotográficos de fallas ocurridas.

Palabras clave: generador síncrono, fallas, rotor, estátor, sistema de puesta a tierra.

Abstract: Synchronous generator is the most relevant power system element, due to its function to convert mechanical energy into electrical energy. Thanks to it can supply the energetic needs of different consumers, whether industrial, residential or commercial.

Operation of synchronous generators must not be interrupted unexpectedly, since this type of process brings significant economic losses and further sanctions by the non-provision of the service. But this fact is inevitable due to the occurrence of faults in the electrical system and the same generator.

In reaction to this fact, you can take steps with the aim of reducing the probability of occurrence of these faults analyzing its characteristics. Due to the little information related to failures in generators, is required the collection and description of failures more common in different parts of the synchronous generator, work done in this document where are classified the fault according to the part that occurs and if it is of nature mechanical or electrical, also shows photographic records of failures that occurred.

Keywords: failures, rotor, stator, synchronous generator, grounding system.
INTRODUCCIÓN

Los generadores síncronos son máquinas muy importantes en el sistema de potencia, ya que son las encargadas de transformar la energía mecánica, en energía eléctrica. Por tal motivo se han desarrollado grandes avances en sus elementos de construcción y herramientas que permiten su análisis en régimen permanente y en régimen transitorio.

Por otra parte, se ha avanzado de manera satisfactoria en el modelo matemático de estas máquinas eléctricas, en particular en los generadores síncronos, en los cuales se tiene una buena precisión en los resultados de su comportamiento, utilizando los diferentes modelos existentes. Estos modelos se explican en diferentes textos académicos. Sin embargo, existe muy poca bibliografía sobre las fallas más comunes, que se presentan en cada uno los elementos que componen estos generadores.

Como consecuencia de lo anterior, la Empresa de Energía del Pacífico está interesada en preparar un material didáctico que permita describir con un buen nivel de detalle, los diferentes tipos de fallas que se presentan con mayor frecuencia en los generadores.

Justificación del problema

Los generadores síncronos intervienen de manera directa en el proceso de generación de la energía eléctrica, son los encargados de entregar la potencia, para posteriormente ser consumida por las diferentes tipos de cargas.

Por lo tanto, se hace necesario un suministro de energía continuo, confiable y robusto; sin embargo, los diferentes tipos de fallas en los generadores síncronos no permiten alcanzar este objetivo. Además, las salidas de los generadores por fallas tienen asociadas grandes consecuencias de carácter económico, como lo es el costo de la reparación de la falla en cuestión y el tiempo de la máquina fuera de servicio.

Debido a que en un generador se pueden presentar diferentes tipos de fallas, es necesario clasificar las fallas que se presentan de acuerdo a sus elementos constitutivos. En la actualidad no existe material académico-didáctico para ilustrar los diferentes tipos de falla que podrían presentar en diferentes partes del generador.

Por medio de la descripción y asociación de las diferentes tipos de fallas a diferentes partes de la máquina, se puede generar un conocimiento que permita
identificar mejoras en sus diseños, identificación rápida de las fallas y replantear los criterios de ajuste de sus funciones de protección.

Objetivos

Objetivo general

Clasificar y describir los diferentes tipos de falla que se presentan más frecuentemente en generadores síncronos grandes y pequeños.

Objetivos específicos

- Describir los diferentes tipos de fallas presentadas en el rotor de Máquinas síncronas.
- Describir los diferentes tipos de fallas presentadas en estator de Máquinas síncronas.
- Describir los diferentes tipos de falla presentadas en el devanado amortiguador.
- Describir los diferentes tipos de fallas presentadas en el sistema de puesta a tierra.
1. PARTES DEL GENERADOR SINCRÓNICO HIDRÁULICO

Los generadores síncronos son importantes debido a que suplen en gran parte las necesidades energéticas de todos los seres humanos para la realización de todo tipo de procesos y actividades de tipo residencial, comercial, industrial. Debido a esto es relevante el estudio de los generadores síncronos para asegurar una operación eficiente, confiable y segura.

En un generador eléctrico los sistemas de aislamiento y de protección son importantes, ya que estas máquinas se ven sometidas a un conjunto de esfuerzos térmicos, eléctricos, mecánicos y ambientales que podrían degradar el sistema aislante y los sistemas operativos del generador ocasionando una falla. Esto genera grandes pérdidas técnicas y económicas para la empresa, incluyendo largos periodos de reparación según el tipo de falla, presentada.

Este trabajo tiene como objetivo realizar una clasificación de las tipologías de las fallas que se producen en los generadores síncronos, ya que son máquinas de costo considerable y que requieren alta confiabilidad. Por eso el diagnóstico de la falla presentada en el generador significa ahorros sustanciales para la empresa. En este primer capítulo se presenta de forma detallada, las partes que conforman estas máquinas. Se describe primero el rotor y luego el estator.

En la Figura 1 se presenta la vista tridimensional de un generador síncrono, los generadores síncronos son máquinas que presentan una alta complejidad en el diseño, construcción y operación debido a su tamaño, los principios físicos bajo los que opera que hacen parte tanto de la mecánica como de la electricidad.
La vista tridimensional permite detallar partes de la máquina: el rotor, el estator, el eje de la máquina, los núcleos polares. Estas partes se describirán con mayor detalle en el desarrollo de este capítulo.
Los generadores síncronos de corriente alterna se clasifican en rotor de polos salientes y rotor de polos lisos o interiores. A continuación se describen las partes de los generadores síncronos de polos salientes, debido a que estos son los que se usan en los sistemas de generación hidráulica.
1.1 ROTOR DE POLOS SALIENTES

El rotor es la parte rotativa en el generador, su objetivo es establecer un campo magnético constante por medio de una corriente de DC que fluye a través de su devanado, ya que para generar electricidad es necesario tener un campo magnético principal. Este campo principal del rotor debe atravesar los conductores del devanado del estator y se requiere que se presente variación de la densidad del campo magnético para que se induzca una fuerza magneto motriz (f.e.m) en el devanado del estator. (Harper, 2004)

El rotor de polos salientes de una central hidráulica tiene una forma constructiva diferente a otros, principalmente debido a la relación entre el diámetro y el largo del generador. En la actualidad se pueden encontrar generadores hidrúlicos con diámetros de 15 m y una relación L/D=0,15-0,20, donde L es la longitud y D el diámetro de la máquina. (M. P. & PIOTROVSKI, 1973), En Figura 2. Se ilustra un rotor de un generador de gran potencia.

Figura 2. Rotor de polos salientes de generador de gran potencia.

En este capítulo se describirá cada uno de los elementos constitutivos de los generadores síncronos entrando en detalles como: los materiales usados, la función que cumplen, la disposición que ocupan en el rotor y Justificación de sus diseños.

En la Figura 3 se presenta la estructura de los elementos que componen el rotor del generador de polos salientes.
Figura 3. Diagrama de Partes del rotor de máquinas síncronas.

La Figura 4. Presenta la estructura de un rotor de polos salientes de una máquina síncrona, se observan sus partes: el eje, la Estrella o araña, el rotor intermedio o llanta polar y los polos. Cada una de estas partes será descrita detalladamente.

Figura 4. Estructura del rotor de polos salientes de generador síncrono.
1.1.1 Polo del rotor.
Esta es una parte muy importante del rotor, ya que los polos tienen la función principal de conducir el campo magnético, debido a su alta permeabilidad (Habilidad de conducir flujo magnético). Sobre los polos se ejercen esfuerzos mecánicos de flexión y torsión, por lo cual deben estar muy bien diseñados y asegurados en el diámetro externo del rotor intermedio. Esto se hace a través de las ranuras en forma de cola de milano o llaves en T como se muestra en la Figura 5.

El radio de la curvatura de expansión polar se calcula teniendo en cuenta el tipo de entrehierro si es de tipo constante o variable. Este arco se construye con el fin que el entrehierro sea menor, para tener una mayor densidad de flujo en este punto y reducir los armónicos de f.e.m. De esta manera se requiere una menor corriente de excitación para una determinada magnitud de f.e.m en el devanado del inducido. En la Figura 5, se muestran las diferentes partes de un polo saliente.

Figura 5. Polo saliente de máquina síncrona.

Fuente: [4]

Es muy importante que el polo sea construido con una alta resistencia estructural y mecánica debido a que este elemento se somete a elevadas aceleraciones centrífugas por su lejanía al centro del rotor. El montaje de los polos en el rotor intermedio se hace por parejas uno dispuesto 180° del otro para evitar un desbalance estático del rotor.

1.1.1.1 Núcleo polar.
El núcleo polar es la parte principal de los polos debido a que tiene la función fundamental de cerrar el circuito magnético y mantener el devanado de campo en posición. El núcleo polar está formado por un apilado de láminas de acero al silicio de alta resistencia, con el objetivo de disminuir las pérdidas por corrientes
inducidas. El apilado de chapas se mantiene unido mediante tirantes pretensados, tornillos y placas en sus extremos. La función de la placa polar es mantener comprimido el apilado polar con una presión uniforme.[5]

La Figura 6 ilustra el núcleo polar y los elementos descriptos anteriormente, donde se observan las laminaciones, las placas polares en los laterales diseñados de una forma más robusta con el objetivo de presionar las laminaciones. En la superficie del núcleo polar donde se apoyan las bobinas del devanado de campo, se produce un efecto de flexión biaxial, es decir, se presentan esfuerzos mecánicos que sumado a la geometría se encuentran puntos de concentración de tensión, estos pueden llegar a producir daños en los conductores del bobinado.

Figura 6. Elementos del núcleo polar o cuerpo del polo.

En la Figura 7, se señala la ubicación de elementos como el devanado amortiguador, los orificios de los tornillos que comprimen las láminas y la cola de milano que permite el acople de las laminaciones con el rotor intermedio.

Figura 7. Lámina del núcleo polar del polo saliente.

Fuente: [6]
1.1.1.2 Devanado de campo.

Hay dos tipos de diseños básicos de rotor de polos salientes. Estos tipos de diseños son determinados por el devanado de campo ubicado en el rotor. El tipo de diseño más antiguo de polos salientes se llama multilayer wire-wound que traduce multicapas de alambre enrollado. En este diseño, el conductor se envuelve alrededor de los polos, como se ilustra en la Figura 8.

Las espiras del devanado de campo por lo general tiene una forma de sección transversal rectangular, y muchos cientos de giros se enrollan en el polo, se presenta una profundidad de varias capas de conductores. El aislamiento de las espiras del devanado de campo generalmente utiliza resina epoxica, barniz y mica. Mirando axialmente, las láminas se forman para tener una expansión en la punta del polo que se define como la cara del polo (es la parte del polo del rotor más cercana al estátor), esto es para apoyar el bobinado en contra de la fuerza centrífuga.

Arandelas y tiras de aislante se colocan entre los conductores del bobinado y las laminaciones para actuar como el aislamiento a tierra como se ilustra en la Figura 8.[7]

Figura 8. Diseño de polo saliente multilayer wire-wound.

Para máquinas de gran tamaño, el diseño de “strip-on-edge” que traduce Tira en el borde favorece más, debido a que puede soportan mejor las fuerzas de rotación. En este caso, una tira delgada de cobre forma numerosos rectángulos o
cuadrados dependiendo de las dimensiones del núcleo polar, dando lugar a las espiras del devanado de campo de modo que los numerosos rectángulos (espiras) puedan deslizarse alrededor del núcleo polar como se ilustra en Figura 9.

Figura 9. Diseño de polo saliente strip-on-edge.

Separadores aislantes laminados (hechos a partir de laminados de vidrio epoxi o materiales nomex) actúan como aislamientos de vueltas para aislar cada espira de cobre en forma de rectángulo en algunas espiras rectangulares de cobre, especialmente los que están cerca a la cara polar, se les agrega una cinta aislante en la lámina del cobre para aumentar la distancia de fuga con el objetivo de reducir la probabilidad de fallas a tierra del devanado de campo. La cinta y los separadores forman el aislamiento de cada espira y el conjunto de espiras de cobre en serie forman la bobina de cobre, al igual que con el diseño multicapa, el devanado está aislado del cuerpo del polo puesto a tierra mediante arandelas y cintas aislantes como se ilustra en la Figura 9. A menudo, en el proceso de fabricación todo el polo puede ser sumergido en un líquido aislante para aislar todos los diversos componentes y al mismo tiempo unirlos.

La Figura 10, presenta las dos formas constructivas de los devanados de campo de máquinas sincronas por un lado el diseño (a) multilayer wire-wound. Y por otro lado en el diseño (b) strip-on-edge, las dimensiones de estas bobinas pueden variar dependiendo del tamaño de la máquina. Para tener una idea de las dimensiones se pueden tener bobinas que pesan cientos de libras, las dimensiones del cobre 0,750” de grosor x 3” de ancho y las dimensiones de las bobinas rectangulares 24” de ancho x 144” de largo.
1.1.2 Puentes del rotor.

Los puentes del rotor son platinas de cobre aisladas mediante cinta de mica, fibra de vidrio, resina epoxi y barniz. Los puentes del rotor conectan en serie los bobinados del devanado de campo, son el circuito de conexión a la fuente de corriente DC de cada uno de los bobinados de los polos.

La Figura 11 ilustra la ubicación del puente del rotor sobre la parte superior del rotor intermedio asegurado por elementos de sujeción, este puente está conectado a los terminales de inicio y fin del devanado de campo de uno de los polos.

Figura 11. Puente del rotor.
1.1.3 Elementos de sujeción del devanado de campo.

Como consecuencia de los esfuerzos centrífrugos a los que se someten los arrollamientos del devanado de campo cuando el rotor se encuentra en funcionamiento, se deben utilizar elementos de sujeción que garanticen la posición y forma de los conductores.

El efecto de la fuerza centrífuga sobre las bobinas es diferente en relación al diámetro del rotor y el número de polos que se tengan, es decir, entre mayor sea el diámetro del rotor se tendrá mayor número de polos. Para este caso los polos se encontrarán a una mayor distancia del eje, incrementando el efecto de la aceleración centrípeta y por ende la fuerza sobre estos. En el caso de generadores con un gran diámetro de rotor, la fuerza centrífuga empuja a la bobina en la dirección del polo. Además, tiende a deshacerse y separarse lateralmente como lo indica la Figura 12.

![Figura 12. Posición de los devanados en los polos.](image_url)

La Figura 13, presenta un elemento de sujeción de los devanados de campo de un par de polos, el cual es asegurado por medio de tornillos al rotor intermedio, su diseño le permite ejercer una fuerza que contrarresta la fuerza centrífuga con el fin de mantener el devanado en posición.

Entre el devanado y el soporte de la bobina se encuentra un aislamiento que cumple la función de proteger el estado del aislamiento de los devanados de campo y que no se produzcan fallas.
1.1.4 **Devanado amortiguador.**

Los generadores hidráulicos cuentan con un devanado de jaula de ardilla, constituido por barras de cobre, algunas veces de bronce. Las cuales están alojadas en ranuras circulares semi-abiertas ubicadas en las expansiones polares, lo más próximas posibles al entrehierro como se puede observar en la Figura 14. Estas barras van remachadas en sus extremos a unos segmentos o anillos del mismo metal formando fracciones de un devanado de jaula de ardilla, o una jaula de ardilla completa.

El devanado amortiguador tiene múltiples objetivos, el principal es que tiende a oponerse a la presencia de todo campo excitado por el inducido que no gire en sincronismo con el inductor. En este sentido reduce la amplitud de los armónicos de tensión, debido a los armónicos de la corriente de inducido.
El devanado amortiguador se opone a la acción que pueda alterar el sincronismo entre la velocidad del rotor y la velocidad del campo variable del estator. Introduce un par que tiene por efecto amortiguar las oscilaciones pendulares que puedan presentarse en la marcha en paralelo de alternadores.[12]

1.1.5 Eje.

Los ejes son una pieza que hace parte del rotor, están construidos de acero laminado o forjado de alta resistencia mecánica y se mecaniza estrictamente con las especificaciones. La potencia mecánica que mueve a la turbina, al estar acopladas al eje genera el movimiento de todo el rotor, el torque del eje se transporta al anillo intermedio por la araña.

1.1.6 Cojinete.

Los cojinetes transmiten las cargas del eje de rotación con el apoyo de las fundiciones o de la máquina. Los cojinetes hidrodinámicos trasmiten de manera flotante la carga en una película de auto-renovación del lubricante. Los cojinetes de empuje soportan las cargas axiales, las cargas radiales son soportadas por los cojinetes guía. Los apoyos de la máquina pueden ser clasificados como horizontal o vertical dependiendo de la orientación del eje. [13]

El aceite del cojinete debido a su adhesión y su resistencia al flujo (viscosidad) es arrastrado por la rotación del eje a fin de formar una película en forma de cuña entre el eje y el apoyo, de esta manera se tiene un bajo coeficiente de fricción y una alta eficiencia en el funcionamiento mecánico del generador.

La Figura 15 ilustra el principio de funcionamiento descrito anteriormente.

Figura 15. Principio de funcionamiento de los cojinetes.
Debido a la presión a la que es sometido el aceite, este aleja el eje de las superficies del cojinete. Cuando el cojinete se acerca la presión aumenta y el aceite forma una cuña que establece una distancia mínima entre el eje y el cojinete.

La Figura 16, muestra los dos tipos de cojinetes utilizados en generadores síncronos, por un lado está el cojinete guía que como su nombre lo indica se basa en ser una guía para la posición del eje. Este es un cojinete liso hidrodinámico cilíndrico, generalmente cuenta con dos ranuras axiales para lubricación. Entre sus características posee una alta capacidad de carga, diseño simple, compacto, bi-rotacional, y fácil de fabricar.

Figura 16. Tipos de cojinetes y sus partes.

Por otra parte el cojinete de empuje soporta las cargas axiales del eje, la carga es sostenida a partir de una película de lubricante, normalmente esta película tiene un espesor del orden de 0,025 mm.

Los dos cojinetes cuentan con unos zapatos (también llamado panel, segmento o bloque) los cuales son los puntos donde se soporta el eje. El zapato tiene tres características básicas: metal blando, el cuerpo y el pivote, y por lo general se conocen como un conjunto.

La superficie del zapato que está en contacto con el eje debe ser antifricción, como lo es el caso del babbit que es un material formando en gran parte por estaño y está unido metalúrgicamente al cuerpo del zapato. La superficie babbit debe ser lisa y plana en comparación con el espesor de la película. El babbit es un metal blando en comparación con el material del eje, y tiene dos funciones: atrapa y se incrustan contaminantes de tal manera que estas partículas no afectan
el estado del eje. También protege al eje de daño extenso que se podría producir por interrupción de la película y contacto de las superficies del eje y el zapato.

El cuerpo del zapato es la estructura de apoyo que sostiene el metal blando o babbitt, normalmente está fabricado de acero. Se utiliza a veces de bronce (con o sin babbitt) dependiendo de la aplicación. Se utilizan materiales de cobre y cromo para reducir la temperatura del metal blando.

El pivote permite que el zapato pueda rotar y formar una cuña. Puede ser integral con el cuerpo del zapato, o ser insertado por separado. La superficie del zapato es esférica para permitir el giro de 360º alrededor del eje.

La Figura 17 presenta la posición de los cojinetes.

Figura 17. Posición de los cojinetes en el soporte.

El cojinete de empuje siempre se encuentra por encima del cojinete guía y están alineados sobre la misma línea central. Su función mecánica es una de las más importantes en el generador ya que operaciones incorrectas llevan a condiciones de fallas.

1.1.7 Anillos deslizantes.

Estos anillos también denominados deslizantes, son elementos que están colocados en el eje y conectan el devanado de campo con el sistema de excitación, mediante las escobillas y porta-escobillas.
Por lo general son construidos de bronce o cobre, siendo dos piezas completas y robustas, puesto que deben resistir los esfuerzos debido a la fuerza centrífuga de rotación a la que están expuestos. [14]

En la Figura 18 se muestran unos anillos deslizantes de un generador hidráulico.

Figura 18. Anillos deslizantes de generador hidroeléctrico de 28,8 MVA.

1.1.8 Escobillas y porta-escobillas.

Son piezas estacionarias que establecen el contacto de los anillos deslizantes con el sistema de excitación, para conectarlos con el devanado de campo. Los porta-escobillas sujetan y presionan las escobillas sobre los anillos deslizantes, permiten un circuito adecuado para la alimentación del devanado de campo.[14]

Las escobillas que se deslizan sobre los anillos deslizantes, siendo estos los del movimiento rotatorio, están hechas normalmente de grafito eléctrico, el cual tiene alta resistencia mecánica a la compresión y baja resistencia eléctrica. Además de ser casi indeformable a los cambios de temperatura.

1.1.9 Estrella o araña.

El diseño de la estrella para máquinas modernas se basa en unos discos, los cuales aseguran una mayor rigidez tangencial, y se tienen menores vibraciones en el rotor intermedio, también denominado “llanta”. Por otro lado se tiene la alternativa clásica de brazos radiales, que es típica en máquinas antiguas. Su ventaja se debe a una mayor flexibilidad tangencial. En la Figura 19 se puede observar la ubicación de la estrella o araña.
Esta estrella tiene como función, transmitir el torque desde el eje a la llanta polar y mantenerla centrada y sin deformaciones en todas las condiciones de operación. También cumple la función de ventilador, en el caso de máquinas con ventilación radial. La estrella es una estructura muy liviana a pesar de su función estructural dinámica.[5]

1.1.10 Rotor intermedio o Llanta polar.

La llanta polar, también denominada núcleo o rotor intermedio se observa en la Figura 19. Es el elemento del rotor que tiene las funciones de unir la estrella de la máquina con los polos. Debido a su gran masa proporciona parte de la inercia necesaria en el rotor y debe resistir los esfuerzos centrífugos de los polos y de su propia masa. Su principal función es transmitir el torque hacia los polos.[5]

El rotor de polos salientes tiene en general la forma de un volante o rueda y su llanta polar constituye la culata del inductor, es decir, es parte a la que se fijan sólidamente los núcleos polares de forma mecánica. Los polos son la base de los arrollamientos del inductor y los rotores intermedios de grandes máquinas hidroeléctricas constan de un apilado de chapas de alta resistencia mecánica, solapadas de modo que una vez prensadas se comportan como un sólido.[5]
1.2 ESTÁTOR DE MÁQUINA DE POLOS SALIENTES

Es la parte mecánica de la máquina que está fija o sujeta a una base, este elemento en su interior tiene ranuras donde se ubican generalmente las espiras de los devanados. De manera general en máquinas de gran tamaño el inducido se ubica en el estator, porque las corrientes que circulan debido a la gran potencia serán muy altas y se dificulta su extracción por medio del conjunto de los anillos y escobillas [17].

En la Figura 20 se ilustra un estator de un generador. El estator de una máquina de polos salientes está constituido principalmente de un conjunto de láminas de acero al silicio (llamados “paquete”), que permiten que pase a través de ellas el flujo magnético con facilidad. La parte metálica del estator y sus devanados componen los polos magnéticos.

Figura 20. Estator de un generador hidroeléctrico de 27.8 MVA.

Figura 21 se ilustra la estructura de los elementos que hacen parte de estator de un generador de polos salientes.
Figura 21. Esquema de las partes constructivas de una máquina de polos salientes.

A continuación se describe cada una de estas partes.

En la Figura 22, se ilustra la estructura del estator de un generador donde se señala el estator y sus diferentes partes.

Figura 22. Estructura del estator de un Generador síncrono.
1.2.1 Carcasa.
La carcasa del estátor es una estructura soldada, fabricada con placas de acero gruesas robustas y resistentes tiene la función de soportar y sostener internamente el núcleo del estátor con el devanado y externamente los cambiadores de calor aire-agua.

En la Figura 23, se puede observar la estructura de acero soldado.

Figura 23. Carcasa del generador síncrono.

1.2.2 Núcleo del estátor.
El núcleo del estátor está formado de láminas segmentadas de acero y silicio de 0,5 mm de espesor y con bajo factor de pérdidas, se ilustra en la Figura 24. Cada segmento está formado por las ranuras, la corona del anillo magnético y asientos de las cuñas que interconectan el núcleo de la carcasa. Es rebabado y cubierto con una fina retocada de barniz eléctricamente aislante y resistente a altas temperaturas y presiones. [20]
1.2.3 Devanado del estator.

En el devanado del estator se induce la f.e.m, por eso es tambien es llamado el devanado inducido ilustrado en la Figura 25. Los devanados del estator estan fabricados con diferentes tipos de aislamientos, dependiendo de su antiguedad, como son a base de asfalto, resina poliester o resina epoxi, esta utiliza diferentes medios y tipos de enfriamiento como son aire o con hidrogeno en circuito abierto o circuito cerrado, enfriando indirectamente o directamente el agua. La Figura 26, ilustra los diferentes materiales aislantes usados para la fabricacion de una bobina en una maquina sincrona.
Los devanados son una de las partes más importantes del estátor de los generadores síncronos y una de las que demanda mayores recursos tecnológicos, desarrollo, investigación y mantenimiento especializado continuo.

Aproximadamente el 66% de las fallas en las máquinas eléctricas ocurren en los devanados del estátor, siendo las fallas más frecuentes.

Figura 26. Materiales aislantes usados en la fabricación de una bobina.

1.2.4 Cuñas del estátor.

La función de las cuñas es asegurar el devanado (o barra) de cobre sobre la ranura del estátor en dirección radial. Tienen una gran resistencia mecánica, así como la capacidad para mantener sus propiedades físicas y eléctricas en condiciones de alta temperatura.

En la Figura 27, se ilustra el sistema de acuñado convencional que tiene el devanado del estátor.

Figura 27. Sistema acuñado del estátor.
1.2.5 Sistema de aislamiento del devanado.

El sistema de aislamiento del devanado del estator contiene varios componentes y características diferentes, que en conjunto se encargan de garantizar que:

- No se presente cortocircuito en los circuitos eléctricos del generador.
- Exista una buena transferencia de calor desde el conductor hasta el núcleo, que en este caso actuaría como un disipador de calor.
- Que los conductores no vibren a causa de las fuerzas magnéticas.

Los principales componentes que conforman el sistema aislante en un generador son:

- Aislamiento entre hilos o Strands.
- Aislamiento entre espiras.
- Aislamiento a tierra.

La función principal de un sistema de aislamiento es separar los componentes que se encuentran a diferentes potenciales o pertenecen a diferentes circuitos como se ilustra en la Figura 28. Además, mejoran la resistencia de la estructura del bobinado, actúa como un conductor de calor entre el bobinado y el entorno, además protege al bobinado de factores externos como la suciedad y los productos químicos.

Figura 28. Aislamiento del devanado del estator.

Fuente: [19]
1.2.5.1 Aislamiento entre hilos.
El aislamiento entre hilos debe tener buenas propiedades térmicas, ya que generan las pérdidas I^2R lo que provoca mayores temperaturas del estator. Además están sujetos a daños durante el proceso de fabricación, por esta última razón también es importante que el aislamiento entre hilos tenga buenas propiedades mecánicas.[23]. Por otra parte el aislamiento entre hilos puede chocar y es relevante que se mantengan aislados para que la distribución de densidad de corriente sea simétrica en todos los hilos. En la Figura 29, se ilustra el aislamiento entre hilos en una bobina de una máquina síncrona.

Figura 29. Aislamiento entre hilos del devanado del estator.

1.2.5.2 Aislamiento a tierra (aislamiento principal).
Es el componente que separa los conductores de cobre del núcleo del estator a tierra, un fallo en este aislamiento normalmente desencadena un disparo del relé de falla a tierra del estator, lo que hace que el generador quede fuera de funcionamiento.

Para garantizar una vida útil larga al generador, el aislamiento a tierra debe funcionar correctamente. Se diseña para estar sometido a esfuerzos eléctricos, térmicos y mecánicos. [23].

Diseño eléctrico del aislamiento a tierra.
Las bobinas o barras conectadas al final del devanado estarán a tensión nominal de fase-tierra. Para el caso de tensiones altas se requiere de un aislamiento a tierra de alto espesor, sin embargo esta tensión sólo se encuentra en las barras que están conectadas a los terminales de fase; mientras que las barras conectadas al neutro, prácticamente no presentan ninguna tensión a tierra.
durante el funcionamiento normal del generador. A pesar de esto, todas las máquinas están diseñadas para tener el mismo espesor de aislamiento en todas las bobinas.

Si se decidiera variar el espesor del aislamiento de acuerdo al nivel de tensión al cual va a estar expuesto, las ranuras del estátor deberían ser de diferentes tamaños y podrían surgir problemas cuando una barra conectada al neutro quede en la parte superior de una barra de fin de fase. Es simplemente más fácil hacer todas las ranuras del mismo tamaño. Una ventaja de este diseño es, que al tener todas las bobinas el mismo espesor del aislamiento, se podrían cambiar las conexiones para invertir la línea con el neutro, lo cual puede extender la vida útil del devanado.

Diseño térmico del aislamiento a tierra.

El aislamiento a tierra del generador, es el componente principal para transmitir el calor de los conductores del devanado al núcleo, que en el caso de las máquinas rotativas actúa como disipador de calor. Por tal motivo el aislamiento a tierra debe tener una resistencia térmica muy baja, para evitar las altas temperaturas en el cobre.

Para lograr una baja resistencia térmica se requieren materiales con una alta conductividad térmica, y el aislamiento debe estar libre de burbujas de aire porque estos vacíos bloquean el flujo de calor.

Por lo tanto el aislamiento a tierra debe ser capaz de funcionar a altas temperaturas y debe ser fabricado de tal manera que se minimicen las formaciones de burbujas de aire en su interior.

Diseño mecánico del aislamiento a tierra.

El aislamiento a tierra también debe ayudar a evitar que los conductores de cobre vibren en respuesta a las fuerzas magnéticas. Si el material aislante presenta burbujas de aire, estas podrían dejar vibrar a los conductores. Esto haría que los conductores se golpeen contra el aislamiento restante, de igual forma permitiría que los hilos de cobre se chocasen entre ellos; lo que lleva a la abrasión del aislamiento.

1.3 MÉTODOS DE PUESTA A TIERRA DE GENERADORES

1.3.1 Transformador de puesta a tierra.

Los transformadores de puesta a tierra, también llamados reactores de puesta a tierra permiten crear un neutro en sistemas trifásicos de tres hilos. Normalmente
este neutro se conecta sólidamente a tierra, o a través de un transformador, permite detectar fallas a tierra del generador.

La corriente permanente en los transformadores de puesta a tierra es pequeña, ya que se utilizan en sistemas trifásicos de tres líneas sin cargas entre fase y neutro. Por lo tanto la corriente nominal del equipo es prácticamente la corriente de vacío del transformador equivalente.

Por otra parte, cuando se presenta una falla a tierra en el generador, la corriente de cortocircuito solo es limitada por la resistencia del terreno y la impedancia propia del generador, adquiriendo valores muy elevados. El transformador de puesta a tierra se diseña y construye para soportar los esfuerzos mecánicos y térmicos ocasionados a esas elevadas corrientes de cortocircuito.

Es usual incorporar una Neutral-Grounding Resistor (NGR) o resistencia de neutro a tierra, en conjunto con el transformador. Para limitar las mencionadas corrientes de cortocircuito. De esta forma se cuenta con un sistema conectado a tierra pero limitando las corrientes a un valor menor, como se ilustra en la Figura 30.

Figura 30. Transformador monofásico de puesta a tierra y NGR.

Al limitar la corriente de falla con un tiempo de respuesta corto, se evita el sobrecalentamiento y la tensión mecánica en los conductores.
1.3.1.1 **Características constructivas.**

Los transformadores de puesta a tierra son diseñados y construidos con un solo devanado en conexión ZIG-ZAG o en conexión estrella-delta.

El núcleo es fabricado con acero al silicio de grano orientado de bajas pérdidas, estos transformadores pueden ser fabricados en aceite o secos, con un bobinado de cobre o aluminio, para su uso interior o intemperie y están diseñados con una resistencia mecánica para poder resistir las elevadas fuerzas de cortocircuito.

Figura 31. Conexión de transformador de puesta a tierra monofásico.

Los transformadores de puesta a tierra monofásicos como el de la Figura 30, se conectan de acuerdo al diagrama de la Figura 31, los terminales primarios se conectan entre el neutro del transformador y tierra. En sus terminales secundarios se instala una resistencia calculada con la capacidad para disipar la potencia asociada a la nueva corriente de falla.

Al momento de especificar un transformador de puesta a tierra se debe tener en cuenta:

Tensión primaria: la tensión primaria del transformado debe ser la tensión nominal del generador o en su defecto la tensión comercial que esté por encima del valor nominal del generador. También se debe especificar el *Basic Insulation Level* (BIL) o Nivel Básico de Aislamiento.
Corriente primaria: el transformador debe estar dimensionado para conducir de manera continua la corriente nominal de fase a fase, la cual está asociada a la corriente de falla cuando se encuentra instalada la impedancia del transformador. Sin exceder su límite de temperatura. Cuanto mayor sea la corriente más grande y costoso será el transformador.

Corriente de falla y duración: se utilizan para determinar el tiempo de calentamiento corto como resultado de un fallo que hace circular la corriente a través del transformador, debido a que se establecen periodos de tiempo para el dimensionamiento de la resistencia del transformador. Los rangos van desde unos pocos cientos a unos pocos miles de Amperes, la duración es expresada en segundo, es decir, 400 A durante 10 segundos.

Impedancia de transformador: esta puede ser expresada como un porcentaje o como un valor óhmico, debe ser elegida de manera que las tensiones de fase sin falla estén dentro de la capacidad temporal de sobretensión del transformador y equipos asociados.

Conexión primaria: Zig- Zag o Estrella-Delta.

Conexión secundaria: Se debe especificar el voltaje secundario y la conexión, la carga auxiliar que se va a demandar.

1.3.2 **Sistema de puesta a tierra con alta resistencia a través de un transformador de distribución**.

Este método de tierra utiliza un transformador que provee alta resistencia en el circuito primario con una baja resistencia en el secundario del transformador de distribución. El primario del transformador de distribución es conectado entre el neutro del generador y tierra. El valor de la resistencia de tierra es extremadamente pequeño (<1 Ω); sin embargo, el valor óhmico visto desde el circuito primario vuelve extremadamente alto el valor de resistencia (en el orden de kilo-ohm). El arreglo es considerado para ser alta resistencia de puesta a tierra y limitar la corriente de falla monofásica a tierra, a un valor en el rango de aproximadamente 3 a 25 A de corriente primaria. Esta no es una magnitud suficiente para hacer operar el relé diferencial del generador así que se debe asignar la protección adecuada para operar frente a esta falla.[26]

Un sistema de tierra de un generador a través de un transformador con una resistencia en el secundario tiene ciertas características que traen consecuencias deseadas:

- El estrés mecánico y el daño por falla son limitados durante una falla fase a tierra por la restricción de la corriente de falla.
• Transitorios de sobre-voltajes son limitados a niveles seguros.
• El dispositivo de tierra es más económico que la inserción de una Resistencia en el neutro.
 Sin embargo, una desventaja de esta alta resistencia a tierra es que el equipo de protección debe ser seleccionado en base a altos sobre-voltajes temporales durante fallas a tierra.

1.3.3 Sistema de puesta a tierra de alta resistencia a tierra con un resistor neutro-tierra.
 Este método de puesta a tierra es equivalente al descrito anteriormente, en este método el resistor es de una resistencia establecida directamente para limitar la corriente de falla monofásica a tierra a las mismas magnitudes que el método anterior, sin el uso de un transformador de distribución.[26]

1.3.4 Sistema de puesta a tierra de baja resistencia a tierra con un resistor Neutro-tierra.
 Este tipo de método de conexión a tierra permite corrientes de falla primarias mucho mayores (400 a 1200 A). En este método, la corriente de falla monofásica a tierra es alta para hacer operar los relés diferenciales del generador para fallas en el estátor, excepto para aquellas fallas cerca del extremo neutro de la máquina. La principal ventaja de puesta a tierra de baja impedancia es la capacidad de la resistencia del neutro para limitar la corriente de falla a tierra a un valor, moderado al tiempo que limita las sobretensiones transitorias a 2.5 veces la tensión de fase a tierra o menos.

 La corriente a través de la resistencia de neutro se puede limitar a cualquier valor, pero por lo general varía de aproximadamente varios cientos de amperes a 1,5 veces la corriente nominal. [26]

 La principal desventaja de la puesta a tierra de baja resistencia es el costo de la resistencia de puesta a tierra y la posibilidad de aumento de temperatura de la laminación por corrientes de falla a tierra elevadas. [26]
2. FALLAS EN EL ROTOR DE MÁQUINAS SÍNCRONAS

Los generadores síncronos son máquinas que operan en condiciones de humedad, elevadas temperaturas, elementos contaminantes, grandes esfuerzos mecánicos entre otros. Lo cual puede generar diferentes tipos de fallos en las diferentes partes de la máquina.

En este capítulo se describen las fallas más comunes que pueden presentarse en el rotor de las máquinas síncronas y se hace una clasificación de acuerdo a la naturaleza de la falla: mecánica o eléctrica. Además, se presentan registros fotográficos que evidencian la ocurrencia de las fallas descritas.

El rotor de la máquina síncrona es un conjunto de partes interrelacionadas, una alteración en una de estas partes genera consecuencias en otras. Por otro lado, es importante mencionar que diferentes fallas o funcionamiento anormales de la máquina pueden originar los mismos síntomas en los elementos que componen el rotor.

2.1 FALLAS MECÁNICAS EN EL ROTOR DE MÁQUINAS SÍNCRONAS

Las fallas mecánicas de las máquinas síncrona están asociadas a diferentes factores de operación; altos niveles de humedad, contaminación, temperaturas elevadas entre otras, los cuales originan desgaste, fatiga mecánica y hasta ruptura.

A continuación se describen las siguientes fallas de tipo mecánico:

- Desalineación de ejes del generador y la turbina.
- Desequilibrio del rotor del generador.
- Excentricidad de rotor del generador.
- Fallas en el eje de máquinas rotativas.
- Fallas en cojinetes de empuje y cojinete guía.
- Falla en puente del rotor.

2.1.1 Desalineación de ejes del generador y la turbina.

La desalineación del eje se presenta debido a la dificultad de acoplar de forma precisa los ejes del generador hidráulico y la turbina. Además la alineación también se ve afectada por cambios de temperatura, el torque del rotor, cargas del generador, dilatación o contracción de las tuberías y presiones de descarga, holguras en los ejes y el acoplamiento, ejes doblados y desequilibrio inercial.
La desalineación se define como una condición por la cual los ejes de las máquinas acopladas no están en la misma línea central. Se presentan tres formas de desalineación: (1) De acoplamiento desalineado, (2) La desalineación de cojinete, (3) Inclinación de eje (precarga). Normalmente la desalineación del eje toma dos formas básicas, la desalineación angular y la desalineación paralela (Inclinación de las líneas centrales del eje de la máquina) y pueden presentarse en dirección vertical y/o horizontal. En la práctica es muy común que se presente una combinación de la desalineación angular y la desalineación paralela, estos casos se ilustran en la Figura 32.

La Figura 32 ilustra los casos de desalineación angular y desalineación paralela.

Figura 32. (a) Eje desalineado, Desalineación Angular. (b) Eje desalineado, Desalineación Paralela.

En la Figura 32 se ilustran dos tipos de desalineación, que se caracterizan por la posición de las líneas rojas mediante las cuales se representan las líneas centrales de los ejes del generador y de la turbina. Las posiciones de estas líneas centrales pueden ser de dos formas: una es la desalineación angular Figura 32 (a) donde el ángulo que forman las dos líneas es diferente de 180 °C, la segunda es la desalineación paralela Figura 32 (b) en el cual las líneas centrales de los ejes, a pesar de estar alineadas angularmente, no están sobre la misma línea.

El primer efecto de la desalineación es producir una precarga de dirección en el eje y los cojinetes, que es una fuerza direccional aplicada en el eje de rotación a través del elemento de acoplamiento. La naturaleza de la falla provoca una fuerza en el rotor con la dirección radial en estado estacionario constante que empuja hacia un lado el rotor y por lo tanto el eje es obligado a girar en una configuración curvada como se ilustra en la Figura 32 (a). La magnitud de esta precarga es una función de la cantidad de desalineación, así como el tipo y el estado del acoplamiento.
Si se presenta desalineación de los ejes del generador y la turbina, esto puede traer como consecuencia una reducción en su vida útil y además un funcionamiento insatisfactorio. El proceso de alineación se debe realizar en los sentidos axial y horizontal con gran precaución, debido a que cometer errores podría dar como resultado daños en los cojinetes y ejes debido a las vibraciones.

La desalineación de ejes trae a las siguientes consecuencias:

- Fallo prematuro de cojinetes, ejes y acoplamientos.
- Temperaturas elevadas del aceite en las cercanías de los cojinetes.
- Pérdida excesiva de aceite en los cierres de los cojinetes.
- Incrementos en los niveles de vibraciones radiales y axiales.
- Degradación prematura del acoplamiento así como ruptura o aflojamiento de sus tornillos.
- Aflojamiento de los pernos, calzos metálicos, o pasadores guía.

De acuerdo a la Figura 32, es posible que se presente una desalienación a la vez, pero en la práctica la condición de operación involucra cierto grado de las dos desalineaciones.

2.1.2 Desequilibrio de rotor del generador.

El desequilibrio se debe a tolerancias de diseño y fabricación, errores de mecanizado y ensamblaje, flechas flexionadas, cambio de componentes del rotor durante operaciones de mantenimiento, desgaste irregular durante la operación de generador, depósitos de material acumulados durante la operación de generador, distorsión del rotor debido a gradientes de temperatura. En la práctica es imposible fabricar un rotor perfectamente equilibrado, ya que hay que considerar las tolerancias de fabricación que pueden producir algún tipo de desequilibrio. [28]

Por tales motivos, y en la construcción del generador aparecen desequilibrios que es necesario corregir. Y se corregen agregando masas en ciertos puntos del rotor que contrarresten las fuerzas resultantes por concentraciones de masa. Pero debido al paso del tiempo y cierta condición en el proceso de montaje, producen vibraciones en la máquina vibra y que sus componentes deban ser re-equilibrados.[29] [30]

El desequilibrio se basa en una distribución no uniforme de masa en el rotor que da lugar a que el eje de giro no coincida con el eje geométrico, lo que genera fuerzas de inercia por la acción centrífuga que afecta a los cojinetes. En la práctica se presentan dos tipos de desequilibrio: desequilibrio estático y desequilibrio dinámico.
El desequilibrio estático se basa en una distribución desigual de masa en el rotor de la máquina, dando lugar a que el centro de masa no coincida con el centro geométrico del rotor, este fenómeno se muestra en la Figura 33.

Figura 33. Desequilibrio estático del rotor de una máquina rotativa.

En la Figura 33, se muestra el centro de masa representado por un punto azul, el cual está desplazado por encima del centro geométrico del rotor (línea punteada roja). Debido a la inconsistencia del centro de masa con el centro geométrico se genera una fuerza debida al giro del rotor, la cual se explica a continuación.

En la Figura 33 se ilustra un rotor con una masa m_1 dispuesta a una distancia r_1 del centro geométrico, la cual gira a una velocidad constante ω. Durante el giro, se genera una fuerza de inercia que es absorbida en los apoyos, de valor $F_A = F_B = m_1r_1\omega^2$. Es decir, el eje del rotor está sometido a un esfuerzo externo (la fuerza centrífuga) que aumenta en proporción al cuadrado de la velocidad de giro. Además se observa que los dos vectores de fuerza F_A, F_B asociados a cada uno de los cojinetes tienen la misma dirección. [29]

Asimismo el desequilibrio estático se puede evidenciar con el rotor en reposo, dado que el centro de masa esta desplazado del centro geométrico, esta masa genera una fuerza (el peso). Si el rotor se coloca de manera horizontal sobre dos apoyos la fuerza del peso, debido al centro de masa inconsistente con el centro geométrico hará que el rotor se gire y busque su estado de reposo.

El desequilibrio dinámico como el estático se debe a una distribución no homogénea de masa, pero que esta balanceada estáticamente, es decir, existe consistencia entre el centro de masa y el centro geométrico del rotor como se ilustra en la Figura 34.
La Figura 34, presenta el caso de desequilibrio dinámico en un rotor.

Figura 34. Desequilibrio dinámico en rotores.

![Diagrama de desequilibrio dinámico]

Fuente:[31]

Este caso se ilustra en la Figura 34 donde se presentan dos masa m_1 y m_2 dispuestas en puntos opuestos del rotor. Cuando el rotor gira a una velocidad constante ω cada una de estas masas da lugar a dos vectores de fuerza opuestos que se ejercen sobre los cojinetes $F_A = m_1 r_1 \omega^2$ y $F_B = m_2 r_2 \omega^2$.

El equilibrado en rotores es el procedimiento que verifica la homogeneidad de la distribución de la masa del rotor sobre su eje de giro, para proceder a la compensación de masa en caso de que la condición vibratoria inicial estuviese fuera de los límites especificados. Este proceso de equilibrado de rotor puede realizarse agregando o quitando masa para compensar las fuerzas de inercia desequilibrantes, aunque el método habitual consiste en agregar masa. De esta forma se garantiza en todo momento, que para condiciones de velocidad de operación la fuerza centrífuga aplicada en los apoyos del rotor no va a producir deterioro acelerado.

El desequilibrio depende esencialmente de la velocidad de giro, las proporciones geométricas, la distribución de masa del rotor y la rigidez dinámica del eje y de los cojinetes.

Efectos nocivos del desequilibrio: [28]

- Falla por fatiga en estructuras.
- Excentricidad del rotor.
- Pérdida de eficiencia del generador.
- Cojinetes, estructura, reciben mayor carga y sufren mayor desgaste.
- Generadores con gran desequilibrio presentan una vida útil reducida.
- Vibraciones pueden producir pérdida de sujeción de diferentes partes de la máquina.

2.1.3 Excentricidad de rotor de generadores síncronos.

La excentricidad del rotor trae consecuencias mecánicas y eléctricas. Básicamente está enfocado un funcionamiento anormal del generador que tiene la posibilidad de desencadenar una falla catastrófica.

Los generadores de grandes potencias están sometidos a enormes esfuerzos mecánicos que producen la deformación tanto del estator como del rotor, y por ende un comportamiento de excentricidad. Estas deformaciones pueden generar la reducción en la distancia de entrehierro hasta el punto que este sea cero y las ranuras del estator choquen con las caras de los polos terminando en la destrucción parcial o total. La excentricidad del rotor también es debida a los fenómenos explicados anteriormente como el desequilibrio y el desbalance del rotor, que da lugar a cargas en el eje que posteriormente afectan los cojinetes del generador.

La excentricidad del rotor es básicamente la variación o asimetría del entrehierro, es decir, la distancia que existe entre la superficie externa del rotor y la superficie interna del estator. [32] El movimiento normal de un eje en un cojinete es un círculo o una elipse, pero cualquier fuerza direccional da como resultado un patrón elíptico o forma en “8” que afecta la vida útil de los cojinetes.

Cuando el rotor de una máquina eléctrica se encuentra centrado, la longitud del entrehierro presenta un comportamiento constante alrededor de la circunferencia del rotor, es decir, si se midiera la longitud del entrehierro en diferentes puntos entre el rotor y estator se tendrá la misma longitud Figura 35 (a).

Figura 35. Tipos de excentricidades (a) rotor centrado, (b) Excentricidad estática, (c) Excentricidad dinámica

\[\text{Fuente: [33]}\]
Por el contrario la excentricidad estática presenta una condición donde el entrehierro radial es mínimo en un punto y se fija en el espacio. Se presenta un entrehierro no constante alrededor de la circunferencia de rotor, es decir, al repetir la medición de la longitud entre el rotor y el estator está presentará unos puntos con mayor longitud y otros con menor longitud debida al desplazamiento del rotor y si la longitud medida en estos puntos se mantiene constante en todo momento se estará presentando excentricidad estática Figura 35 (b).

La excentricidad dinámica es una condición en la que el mínimo entrehierro radial gira con el rotor, es básicamente el entrehierro no constante alrededor de la circunferencia Figura 35 (c). Ambas excentricidades tienden a coexistir, de hecho existe un pequeño nivel de excentricidad estática en todas las máquinas, incluso en máquinas nuevas debido a la fabricación y métodos de ensamblaje.

La excentricidad dinámica mecánica puede causar vibraciones originadas por la distribución asimétrica del entrehierro, sin embargo este fenómeno es más difícil de detectar en el caso de la excentricidad estática; la excentricidad estática se ha observado en las máquinas hidráulicas antiguas, debido a la forma ovalada del núcleo del estator.[34]

La excentricidad estática en máquinas síncronas de polos salientes tiene un impacto significativo en el rendimiento de la máquina. Esto se manifiesta por el aumento de las oscilaciones en los flujos magnéticos del rotor y el aumento del ángulo de carga.

La excentricidad produce vibraciones en la máquina, lo cual genera una reducción en la vida útil de los cojinetes y puede presentarse el caso de que el entrehierro se reduzca a valores tan pequeños que se produzca choque entre la cara de los polos y el núcleo del estator.

2.1.4 Fallas en cojinetes.

2.1.4.1 Descargas electrostáticas en máquinas rotativas.

Algunas máquinas rotativas presentan descargas electrostáticas, las posibles fuentes están asociadas a características mecánicas o eléctricas que inducen una tensión en su eje de rotación creando una diferencia de potencial con respecto a tierra. Una fuente de descargas electrostáticas, es la creación de un potencial eléctrico entre los extremos opuestos del eje del generador, fenómeno relacionado con la exposición del eje que es un material conductor a un campo magnético variable. Por otra parte asimetrías en las trayectorias magnéticas del mismo puede generar una tensión capacitiva debido a una ondulación en la tensión de DC del campo, que puede resultar en una diferencia de tensión con respecto a tierra. [35]
Si la tensión inducida en el eje no se disminuye por algún método como el sistema de mitigación de voltaje (a menudo una escobilla en el eje que va conectado al sistema de puesta a tierra), la descarga electrostática busca una ruta alternativa a tierra. Ese camino es normalmente algún componente metálico como los cojinetes que están más cercanos al eje, la formación de arco eléctrico entre el eje y el cojinete se denomina descarga electrostática. [35]

Este arco eléctrico erosiona superficies metálicas, si no se detecta la descarga electrostática destruirá gradualmente el cojinete, cambiara la dinámica del rotor y puede en última instancia provocar daños en el eje.

En un periodo de tiempo las descargas electrostáticas pueden conducir a picaduras y erosión visible con un aspecto escarchado de la superficie del apoyo. Si el problema no se detecta a tiempo, la superficie del eje puede llegar a deteriorarse implicando elevados costos de reparación.

Los fabricantes toman las tensiones inducidas en cuenta al diseñar sus máquinas. El cojinete en un extremo del generador esta normalmente aislado para crear un circuito abierto y así evitar las descargas electrostáticas debida a las tensiones inducidas en el eje.

Las descargas electrostáticas provocan daños en los cojinetes y el eje, su efecto es progresivo y difícil de detectar, ya que sus consecuencias son de tipo mecánico y se evidencia cuando los daños son bastante graves. Por ende es relevante el monitoreo de las descargas electrostáticas y el mantenimiento a la escobilla que aterriza la tensión del eje. La detección tardía del problema puede traer consecuencias graves que dan lugar a una interrupción significativa de la máquina para eliminar las alteraciones superficiales en el cojinete y reparar posibles daños en el eje.

La Figura 36, presenta las consecuencias de descargas electrostáticas en el cojinete del generador.

Las descargas electrostáticas dan lugar a picaduras en la superficie del material antifricción, en la Figura 36 estas picaduras aparecen como pozos redondeados en el revestimiento del cojinete. Las descargas electrostáticas se presentan en los puntos donde la película de aceite es más delgada, y se generan partículas que dan lugar a abrasión en la superficie del cojinete.
2.1.4.2 Abrasión en los cojinetes.

La abrasión es causada por partículas de gran dureza y de mayor espesor que la película de aceite. Las partículas provienen de diferentes fuentes como: partículas contaminantes en el lubricante (pueden provenir del exterior o ser resultado de desgaste interno de la máquina), partículas desprendidas del mismo cojinete por cavitación o fatiga superficial.[13]

La abrasión consiste en que las partículas pueden incrustarse en el babbitt debido a su suavidad, exhibiendo un corto rayón sobre la superficie del zapato, terminando en la incrustación de las partículas. Dependiendo de los tamaños de las partículas, el rozamiento puede continuar a través de toda la superfi cie del zapato del cojinete.

Los daños por abrasión empeoran con el tiempo, debido a que rasguños superficiales permiten un escape del aceite de lubricación y se genera una disminución en el espesor de la película de aceite que conforma la cuña. Esto a largo plazo conducirá a que se desgaste la superfi cie del cojinete. Otra fuente de daños por abrasión es un eje áspero, collar o superfi cie del zapato. Esta aspereza puede ser debida a daños anteriores por abrasión. Debido a oxido formado después de extensos periodos de tiempo fuera de funcionamiento. Cuando el eje está visiblemente dañado no se deben instalar nuevos cojinetes.

La Figura 37, presenta abrasión en la superficie de un zapato de un cojinete de empuje.
La superficie del zapato de la Figura 37, presentan rasguños circunferenciales como resultado de daño por abrasión.

2.1.4.3 **Daño por formación de óxido de estaño en los cojinetes.**

El óxido de estaño es resultado de una reacción electroquímica, formada debido a la presencia de *babbitt* a base de estaño, aceite y agua salada, en las zonas de alta temperatura y presión en el cojinete. Una vez que se ha formado el óxido de estaño, no puede ser disuelto y su dureza evitara que partículas extrañas se incrusten en el revestimiento del cojinete. Por lo tanto se produce daño por abrasión. Piezas de óxido de estaño pueden desprenderse durante la operación y rayar el cojinete, collar, o superficie del zapato. La formación de óxido de estaño también eliminará el juego del rodamiento. [13]

La producción de óxido de estaño en el interior del cojinete da lugar a abrasiones en la superficie del zapato, además altera la superficie afectando su simetría.

La

Figura 38 ilustra el daño por óxido de estaño en in zapato de empuje.
Figura 38. Daño por óxido de estaño.

2.1.4.4 Calentamiento excesivo

Las causas del calentamiento están asociadas a la calidad y la cantidad del suministro de lubricante, entre las posibles causas están: la selección de lubricante inapropiado, suministro de lubricante inadecuado y película de fluido interrumpido. Además, se pueden presentar otras condiciones que también causen el sobrecalentamiento como juego en el cojinete insuficiente que impide la formación de película de aceite, carga excesiva y exceso de velocidad. [13]

El daño por sobrecalentamiento se evidencia por decoloración del babbitt, grietas, limpieza o deformación. Repetidos ciclos de calentamiento pueden producir trinquetes térmicos que alteran la superficie del zapato, la Figura 39, presenta la falla de calentamiento excesivo en cojinete de empuje.

Figura 39. Calentamiento excesivo en cojinetes. (a) Cojinete de empuje, (b) Zapato de cojinete de empuje.

Fuente: [13]
En la Figura 39 (a), se observan cambios en el color del material antifricción \textit{babbitt} debido a las altas temperaturas alcanzadas. Por otra parte, la Figura 39 (b) muestra los resultados de trinquete térmico, por el cual se ha alterado la homogeneidad de la superficie del zapato.

2.1.4.5 \textbf{Ampollas de hidrógeno}

En ciertas ocasiones, el gas hidrógeno queda atrapado durante el ensamblaje o forja de piezas de acero. Si la base del \textit{babbitt} es acero y el gas emigra a la superficie, las ampollas se pueden formar en la zona, lo que debilita la unión entre el \textit{babbitt} y la base de acero del zapato.

Se ha demostrado que el recocido térmico (proceso térmico que consiste en calentar el material hasta cierta temperatura y dejar que se enfríe lentamente), sirve para disipar el hidrógeno y prevenir la formación de ampollas.

La Figura 40, presenta el caso de formación de ampollas en el \textit{babbitt}.

Figura 40. Formación de ampollas en cojinete guía.

La pieza de la Figura 40, no paso por el proceso de recocido térmico de forma accidental y en el proceso de mecanizado surgieron grandes ampollas de hidrógeno sobre la superficie.
2.1.4.6 Fatiga mecánica

La fatiga mecánica resulta de una combinación de factores, lo más común es la carga cíclica. El mecanismo de fatiga implica flexiones repetitivas del cojinete, y el daño se produce con mayor rapidez cuando se presenta una unión deficiente entre el material antifricción y el apoyo con el zapato.[13]

Es importante resaltar que los daños por fatiga pueden aparecer así no halla mala unión entre en material antifricción y la base del zapato. La fatiga puede ocurrir bajo condiciones que producen cargas cíclicas concentradas, tales como:
• Desalineación.
• Excentricidad del cojinete.
• Eje doblado.
• Ciclos térmicos.
• Vibración.

Altas temperaturas en los cojinetes contribuyen al daño por fatiga de los cojinetes, debido a que la resistencia mecánica de los materiales disminuye con el aumento de la temperatura.

Los daños por fatiga mecánica se pueden representar como grietas inter-granulares o rozamientos en el material antifricción, las grietas pueden estar en la dirección de rotación del eje, extenderse sobre el babbitt y descubrir la base del zapato. Por otro lado piezas de babbitt pueden estar desubicadas.

La Figura 41, ilustra las consecuencias de fatiga mecánica en cojinetes.

Figura 41. Consecuencias en cojinetes por fatiga mecánica. (a) cojinete guía, (b) zapato del cojinete guía.

Fuente:[13]
La Figura 41 (a), ilustra la fatiga mecánica en el cojinete y La Figura 41 (b) ilustra la fatiga mecánica en el babbitt de un zapato de cojinete, en la parte inferior se observa la ausencia de material babbitt.

2.1.5 Falla en el puente del rotor.

Los puentes ubicados en el rotor cumplen la función de interconectar los devanados de los polos en serie, hasta llegar a las terminales de la fuente de corriente directa.

La falla en puente del rotor corresponde a una falla de tipo mecánica cuando presente ruptura y/o torsión provocada por la fuerza centrífuga, que se genera por el movimiento rotativo del rotor.

La Figura 42, Muestra una falla de un puente del rotor que termina destrozado y rozando la parte interna del estator, generando daños en el aislamiento de las barras del estator y en los elementos de sujeción (amarras de los devanados del estator).

Figura 42. Falla en el puente del rotor.

2.1.6 Ejes doblados

En un eje perfectamente recto, los centros de cada sección transversal del eje de extremo a extremo deben estar alineados, si esto no sucede el eje estará doblado.
Los ejes doblados se pueden producir por sobrecarga mecánica por daños durante un alineamiento inadecuado, impacto durante la operación o desalineación de la máquina. Otras causas pueden ser operaciones de mecanizado desiguales, vibración durante el transporte, manejo inadecuado durante la forja y temperaturas elevadas durante el funcionamiento.[36]

En un eje doblado el rango de la órbita o giro causada por la curva del eje se define como la desviación del eje, y se mide típicamente en términos de “TIR” (Lectura rotacional de indicador).

Un generador con eje doblado presenta varias consecuencias como:
- Desalineación del eje.
- Vibraciones debidas al desequilibrio.
- Daños en cojinetes.
- Fatiga de materiales.

2.1.7 Grietas en ejes

Para la determinación de grietas en ejes de generadores síncronos se usan diferentes métodos no destructivos, uno de ellos es la aplicación de líquidos penetrantes. En cualquier caso, una grieta en un eje llega a producir un cambio en la disposición de las masas de rotor y puede detectarse antes que la avería llegue a ser catastrófica.

Cuando se desarrolla una grieta en un eje, este pierde rigidez en la dirección perpendicular a la grieta. En un eje que está bajo carga se producen dos flexiones por vuelta, por tanto en el espectro aparecerá un pico de vibración correspondiente a 2x r.p.m, y el valor correspondiente al 1x es inestable. Esta variación de 2x se origina por la pérdida de rigidez del eje en la dirección perpendicular a la grieta, ocasionando una oscilación cíclica de dos oscilaciones por vuelta.[37]

Las grietas también se pueden determinar mediante el análisis de vibraciones, existen dos cambios fundamentales que ayudan a identificar que se está produciendo una grieta en el eje:
- Cambios inexplicables en la amplitud y fase de la vibración.
- Aparición de picos con amplitud correspondiente al doble de la normal.

El primer síntoma que se presenta es un cambio de amplitud y fase en la medida de la vibración correspondiente al 1x. Si se dispone de un gráfico en cascada, se podrá ver que en las inmediaciones de la velocidad crítica aumenta el valor de la amplitud de 2x. Una vez superada la velocidad crítica, el valor de vibración puede disminuir pudiendo aparecer picos a 3x y 4x.
Existen otros fenómenos que pueden dar lugar a cambios en las vibraciones del eje de la máquina, como eje doblado, desalineación, etc. Que pueden mostrar valores altos de vibración a 1x o 2x, Sin embargo es importante descartar posibles grietas en el eje.

2.1.8 **Fallas en anillos deslizantes.**

Los anillos deslizantes de generadores síncronos verticales se hacen generalmente de acero. La superficie de los anillos de los generadores más grandes está estriado para asegurar un funcionamiento estable de las escobillas frente a vibraciones que se puedan presentar, el estriado se basa en ranuras helicoidales poco profundas sobre la superficie del anillo deslizante.

Las máquinas de menor capacidad en general tienen anillos de menor diámetro con pocas escobillas y por lo tanto los anillos no son estriados.

En general los problemas del anillo del deslizante pueden atribuirse a cuatro causas: desgaste desigual, superficie impura, desarrollo de manchas, formación de huellas de pincel.

2.1.8.1 **Película desigual en la superficie del anillo deslizante.**

En la Figura 43, se muestran manchas de diferentes formas, colores y dimensiones, sin ningún patrón.

La causa más frecuente de estas manchas desiguales es Anillos deslizantes deformador o sucios.
2.1.8.2 **Imagen de escobilla sobre la superficie del anillo deslizante.**

Se basa en una marca de color oscuro que reproduce la superficie de contacto de escobillas de carbón en el anillo deslizante.

Las causas más frecuentes son la sobrecarga accidental o marca de electrolito durante un largo periodo de paro.[38]

La erosión del arco presente en la interfaz de las escobillas y los anillos genera unas marcas o puntos sobre la superficie del anillo.

Las marcas pueden extenderse en el tiempo y hacer que la superficie del anillo no sea redonda. Además algunas veces se puede observar en la superficie del anillo como la escobilla rebota o salta.

Las consecuencias de estas manchas son las siguientes:

- Pérdida simultanea de contacto.
- El efecto inicial es una perturbación mecánica.
- El daño a los anillos es una posterior erosión eléctrica.
- Con el tiempo, las marcas iniciales pueden extenderse y no ser visibles, pero el anillo irá perdiendo su redondez.
- El daño es progresivo y empeora a una tasa creciente.
Estas manchas pueden desencadenar alteraciones mecánicas como:

- Rotor fuera de equilibrio.
- Zona de alta fricción en el anillo.
- Inestabilidad en las escobillas.
- Contaminación.
- Alta fricción en los porta-escobillas, hace lenta la respuesta de los resortes.
- Corrosión bajo las escobillas, cuando se dejan en contacto con el

La Figura 44, presenta unos anillos deslizantes con marcas de las escobillas sobre su superficie, estas marcas de presentan distanciadas.

Figura 44. Imagen de escobilla sobre la superficie del anillo deslizante.

Fuente: [39]

2.1.8.3 Hilos sobre la superficie de los anillos deslizantes

En condiciones normales un poco de metal es retirado de los anillos y se vaporiza, en ocasiones el metal no se vaporiza completamente y se transfiere a la cara de la escobilla, es decir, el área que está en contacto con los anillos deslizantes.

Las pequeñas partículas se endurecen, sobrepasando la dureza de la superficie del material de los anillos y cortan los anillos formando pasos finos como hilos.

Baja corriente en la escobilla disminuye la vaporización del metal y puede aumentar los hilos sobre la superficie de los anillos. Contaminantes como gases que contienen azufre aumentan la transferencia de metal y de esta manera el número de hilos sobre la superficie de los anillos.
Además baja presión en las escobillas aumenta la transferencia de metal y los hilos sobre la superficie de los anillos.

La Figura 45, presenta la formación de hilos en la superficie de un anillo y las marcas de cobre sobre la superficie de una escobilla.

Figura 45. Hilos sobre la superficie de anillo deslizante y escobilla.

Fuente: [39]

2.1.8.4 Ranuras en los anillos deslizantes.

Las ranuras es un desgaste uniforme en toda la circunferencia de los anillos, siempre habrá algún desgaste mecánico y eléctrico de los anillos. Sin embargo, la tasa debe ser lo suficientemente alta como para requerir un mantenimiento frecuente del anillo.

Se puede presentar desgaste mecánico excesivo por el ángulo en que se ajusten las escobillas sobre la superficie de los anillos. Además baja presión en las escobillas aumento el desgaste eléctrico de las mismas.

Anillos construidos con acero y acero inoxidable son más resistentes al desgaste mecánico que los anillos de bronce.
La Figura 46, muestra anillos rozantes con la formación de ranuras en su superficie.

Figura 46. Anillos deslizantes con ranuras.

Fuente: [39]

2.1.8.5 Deformación de anillos deslizantes.

Puntos planos, segmentos que sobresalen o son demasiado bajos, defectos, etc. Todas las desviaciones de la forma circular causan movimientos violentos de las escobillas y la formación de chispas. Esto se traduce en un aumento de las variaciones superficiales afectando la redondez de los anillos, un mayor aumento del desgaste de las escobillas, graves daños a los anillos y escobillas de carbón.[40]

La deformación de la circularidad se puede deber a factores termicos debido a cambios de temperatura y puntos de operación con temperaturas elevadas. También puede deberse a errores en el ensamblaje.

La deformación de los anillos causa una amplia amplitud en las vibraciones de los anillos lo cual afecta la vida útil de las escobillas y de los mismos anillos.

Deformaciones como ovalidad pueden generar fallas adicionales como alto estrés en el devanado del rotor, defectos en el devanado del rotor, desequilibrio de las resistencias de contacto de las escobillas.[41]
2.1.8.6 **Seletividad de escobillas sobre la superficie de anillos deslizantes.**

Las escobillas en anillos deslizantes operan en paralelo, las escobillas nunca se gastan a la misma velocidad de esta manera se producen flujos de corrientes desiguales en las escobillas paralelas que afectan sus tasas de desgaste.

Las escobillas con una corriente y temperatura más altas generalmente se gastan más rápido. Por otro lado fricción mecánica que restringe el movimiento de las escobillas en el porta-escobillas altera su proceso de desgaste.

La resistencia más grande en las escobillas conectadas en paralelo es la pérdida de contacto entre la escobilla y el anillo. La pérdida de contacto tiene la mayor influencia en la selectividad de las escobillas.

Por otro lado la contaminación en los portaescobillas y escobillas como se ilustra en la Figura 47, pueden afectar el funcionamiento de los resortes como se menzioni anteriormente y aumentar la resistencia de contacto.

Figura 47. Selectividad de escobillas.

2.1.8.7 **Pérdida de contacto de las escobillas**

El arco eléctrico entre la escobilla y el anillo puede deteriorar la vida de la escobilla y dañar la superficie del anillo.
Las causas de este fallo son:
- Resortes de escobillas débiles.
- Escobillas cortas en los porta-escobillas.
- Vibración.
- Permitir el uso de escobillas muy cortas.

La Figura 48, muestra escobillas muy cortas que dificultan la conducción de corriente además se puede presentar la acumulación de metal como se observa en los puntos de la derecha.

Figura 48. Escobillas muy cortas que generan perdida de contacto con los anillos.

2.1.8.8 Corrosión en anillos deslizantes.

Anillos de acero pueden oxidarse si se ponen a la humedad, en el aire o al agua líquida. Por otra parte metales con contenido de cobre como el bronce reaccionan con compuestos de azufre en el aire.

La Figura 49, muestra la corrosión en anillos deslizantes debido a condiciones ambientales que son propicias para la formación de óxido en la superficie de los anillos.
2.1.8.9 **Huellas sobre los anillos deslizantes.**

En ocasiones una impresión de las escobillas se encuentra en la superficie de los anillos deslizantes. Esto por lo general se produce en la máquina que está expuesta a la humedad o vapores de ácido. Cuando la máquina no está funcionando, los gases actúan sobre la superficie del anillo que no está en contacto con las escobillas. La diferencia en la condición de la superficie causada por esta acción puede generar una ligera quemadura en la superficie debido al giro del anillo.

Las huellas de escobillas debidas a la humedad o vapores se producirán en cualquier punto en la que la máquina detiene su giro, en comparación con las huellas debidas a la inexactitud de los anillos, que siempre se producirá en el mismo lugar en el anillo.

Las marcas sobre los anillos también puede ser causados por una ligera imprecisión en su superficie, que puede causar vibración o movimiento cada vez que la escobilla pasa por cierto punto donde se encuentra la imprecisión. La escobilla salta ligeramente y cuando cae deja una marca en el anillo. Anillos elípticos u ovalados también pueden causar esta condición, este fallo se presentó en el anillo de la Figura 50.
Los anillos deslizantes de la Figura 50, presentan saltos en las escobillas debido a contaminación de la superficie. Los saltos de las escobillas provocaron marcas (huellas de pincel) sobre la superficie del anillo, produciendo un funcionamiento ineficiente.

2.1.8.10 Patinas en la superficie de anillos deslizantes.

Las patinas son una compleja formación de óxido de cobre de aproximadamente el 75% y el 20% de grafito, con agua y contaminantes ambientales que componen el porcentaje restante 5%. El equilibrio de estos elementos es crítico para una vida útil adecuada de las escobillas y los anillos deslizantes.[42]

Las patinas menos conductoras afectan la corriente que se distribuye por las escobillas, además de alterar la fricción. El aumento de la fricción reduce la duración de las escobillas y puede dañar la superficie de los anillos.

Las patinas de alta resistencia se pueden formar por la reacción de los materiales de los anillos y contaminantes presentes en el ambiente que tengan dióxido de azufre, cloro o ácidos. La formación de este tipo de patinas puede dar paso a la formación de arco y se produce un flujo de corriente en la interfaz del anillos y la escobilla lo cual acelera el desgaste de las escobillas y puede deteriorar la superficie de los anillos deslizantes.[42]

Lo anterior da lugar a realizar mantenimientos más continuos y es muy posible que se desencadene en fallos que alteren la operación del equipo.
2.1.8.11 Desgaste desigual

El desgaste desigual se presenta cuando el material del anillo no es de una dureza uniforme. La única solución definitiva para este problema es reemplazar los anillos.

La Figura 51 presenta el caso de desgaste desigual de un par de anillos deslizantes, las flechas de color blanco señalan la secciones de los anillos con óxido en la superficie señal de ausencia de contacto por parte de las escobillas en estas secciones y los círculos de la derecha indican un desgaste excesivo de secciones resultado de la presión del resorte de la escobilla al ser demasiado alta. El desgaste desigual de los anillos deslizantes es indicativo de la falta de mantenimiento de la plataforma del cepillo.

La Figura 51, evidencia el desgaste desigual de anillos deslizantes.

Figura 51. Desgaste desigual de los anillos deslizantes.

Fuente: [43]
2.2 FALLAS ELÉCTRICAS EN EL ROTOR DE MÁQUINAS SÍNCRONAS

Las fallas eléctricas del rotor están relacionadas con el estado de los materiales que conforman el sistema aislante del rotor. Este sistema se ve afectado por diferentes factores, que pueden ser minimizados con estrictos mantenimientos obteniendo beneficios como la reducción en la probabilidad de falla de la máquina y todas las consecuencias de tipo económico que esto representa.

A continuación se describen las siguientes fallas:

- Falla de cortocircuito entre espiras del devanado de campo.
- Falla de circuito abierto del devanado de campo.
- Falla a tierra del devanado de campo.
- Falla de ruptura de barra del devanado amortiguador.
- Falla de sobre-corriente en devanado amortiguador y cara del polo.
- Fallas en anillos deslizantes.

2.2.1 Falla de cortocircuito entre espiras del devanado de campo.

La falla de cortocircuito entre espiras del devanado de campo se presentan debido a las condiciones de operación de la máquina como: residuos de limpiadores dieléctricos, polvo de escobillas, humedad, contaminación, temperaturas elevadas, ciclos de arranque y parada, alteraciones de la línea, el propio envejecimiento del aislamiento y errores cometidos por fabricantes que aceleran el proceso de envejecimiento de los materiales aislantes.

El cortocircuito entre espiras se basa en una reducción de las espiras útiles para la generación de campo magnético, debido a que cuando el aislamiento falla se produce un nuevo camino para la circulación de la corriente.

El impacto de la operación de un generador con espiras del devanado de campo en cortocircuito depende del porcentaje de espiras totales cortocircuitadas. Si el porcentaje de espiras cortocircuitadas es pequeño, el generador puede ser capaz de operar con la carga nominal durante años sin tener mayores consecuencias. Sin embargo cuando se presenta un gran porcentaje de espiras en cortocircuito, es posible que se presenten condiciones de funcionamiento que limiten la carga de las unidades y originen interrupciones forzosas en la operación del generador.[44] por incremento de vibraciones.

Las unidades de generación que ya llevan un tiempo de operación, son más propensas a experimentar cortocircuito entre espiras en el devanado del rotor. Las tensiones que intervienen en cada ciclo de arranque–parada desempeñan un papel importante.
Los diagramas polares de la Figura 52 ilustran los resultados de la medición del flujo magnético en el entrehierro, normalmente se utilizan pequeñas bobinas montadas de forma permanente en cuñas o dientes del estator. Las bobinas miden el flujo principal de cada polo del rotor que pasa con cada revolución. Si se presenta cortocircuitos entre las espiras se observará una reducción en la magnitud de flujo magnético, se puede utilizar la comparación de la magnitud de flujo magnético de polo a polo para determinar espiras en cortocircuito.

Figura 52. Diagramas polares de 64 polos, el eje radial es la magnitud de flujo magnético y los polos magnéticos se aumentan en la circunferencia. (a) Rotor sin cortocircuitos. (b) Rotor con cortocircuitos.

Bajo condiciones normales de operación (sin cortocircuitos entre espiras), el flujo magnético es esencialmente uniforme alrededor de la circunferencia, las pequeñas diferencias en la construcción y montaje de los polos y la excentricidad se traducen en un círculo un poco imperfecto como el de la Figura 52 (a).

La Figura 52 (b) muestra el resultado del mismo rotor de 64 polos con cortocircuitos artificiales en los polos 8 y 48, en los cuales se presenta mayor variación en la uniformidad de la magnitud del flujo magnético medido, en el polo 8 con una espira en cortocircuito y el polo 48 con tres espiras en cortocircuito (disminución de la magnitud resaltado por círculos rojos).
2.2.2 Falla de pérdida de excitación.

La pérdida de excitación es una falla muy común en el funcionamiento de la maquina síncrona y puede ser causado por un cortocircuito del devanado de campo, lo cual origina la apertura inesperada del interruptor de campo. [45]

Cuando se presenta pérdida de excitación la máquina comienza a absorber reactivos del sistema y se inducen corrientes de baja frecuencia en el rotor las cuales le producen sobrecalentamiento.

Esta falla puede causar grandes daños en el generador y el sistema:

Daños en el generador

- Sobrecalentamiento de los devanados por la excesiva corriente capacitiva circulando a través de ellos.
- Cuando la pérdida de excitación sucede, se produce una “aceleración”. Esto puede hacer que se presente calentamiento en el rotor debido a la frecuencia de deslizamiento en los circuitos del rotor.
- A medida que la máquina funciona como una máquina de inducción después de la pérdida de excitación, se requiere gran cantidad de potencia reactiva suministrada por la corriente del estator. El estator puede sufrir sobrecalentamiento debido a esta gran corriente.

Daños al sistema

- Inestabilidad en el sistema. El generador demanda gran potencia reactiva, esto puede sobrecargar las líneas tanto, que sus protecciones de sobre-corriente se disparen. Esto pueden causar a su vez el disparo en cascada de líneas por sobrecarga ya que hay menos vías de transporte para la potencia, formando grupos en el sistema con exceso o déficit de generación, alterando tanto la tensión como la frecuencia en el sistema.
- Cuando un generador pierde su excitación, otros generadores aumenta su generación de potencia reactiva. Esto puede provocar la sobrecarga de algunas de las líneas de transmisión o transformadores y el relé de sobre-corriente puede considerar esta sobrecarga como falla y aislar los circuitos.
- La oscilación de potencia y la caída de tensión causada por la pérdida de excitación puede afectar el funcionamiento normal de los generadores y dar lugar a la pérdida de sincronismo de algunos generadores en el sistema.

2.2.3 Falla a tierra del devanado de campo.

Las fallas a tierra se presentan por fallas de aislamiento, una sola falla a tierra del devanado de campo no afectara la operación de los generadores y tampoco generara de manera inmediata consecuencias perjudiciales para el estado del generador.
Sin embargo, la probabilidad de una segunda falla a tierra es bastante alta después de haberse producido la primera falla, ya que la primera falla a tierra establece una referencia de tierra para tensiones inducidas en el devanado de campo por los transitorios ocurridos en el estator. Estos transitorios aumentan la tensión a tierra entre otros puntos en el devanado de campo.

Figura 53. Primera falla a tierra en el devanado de campo.

En la Figura 53 se ilustra la ocurrencia de una primera falla a tierra en el devanado de campo de un generador, en el cual se observa que no se presenta flujo de corriente debido a que no existe un circuito cerrado. Pero en el caso de que ocurriese un segundo fallo a tierra se establecería un cortocircuito del devanado de campo y una circulación de corriente a tierra.

Cuando se produce la segunda falla a tierra, una parte del devanado se cortocircuita. De este modo se genera un desbalance en los flujos del entrehierro de la máquina. Los flujos desequilibrados producen fuerzas magnéticas desequilibradas que se traducen en vibraciones de la máquina y daños. [47]

El campo a tierra también produce calentamiento del hierro del rotor desde el desbalance de corrientes que resulta y un desbalance de temperaturas que puede causar vibraciones perjudiciales.

2.2.4 Falla de ruptura de barra en el devanado amortiguador.

En un generador síncrono, ciclos de arranque y parada pueden causar la falla de barras rotas.

Cuando se presenta ruptura de barras del devanado amortiguador en uno o más polos, la simetría del campo magnético y su distribución se pierde. En la Figura 54 (a). Se presentan unos polos sin barras rotas y en la Figura 54 (b), se
ilustra la distribución del flujo cuando la barra numero 5 contando desde la derecha presenta ruptura. En este caso presenta un aumento en la concentración de flujo cerca de la ubicación de la barra rota. [48]

Figura 54. Densidad de flujo en devanado amortiguador con a) Barras sanas b) Barras rotas.

Las corrientes en las barras rotas se reducen o son cero y la distribución de corrientes en las barras son menos uniformes que el rotor sin barras rotas. Las barras adyacentes a la barra rota conducen mayores corrientes y como consecuencia pueden presentar mayores probabilidades de falla.

2.2.5 Falla de sobre calentamiento en devanado amortiguador y zapata polar.

El devanado amortiguador se puede sobrecalentar debido al flujo de corrientes de secuencia negativa. Las causas más comunes que dan origen a la circulación de corrientes de secuencia negativa se presentan cuando el generador está alimentando cargas desbalanceadas y cuando se presentan fallas a tierra o entre fases. La falla entre fases es la condición que tiene mayor aportación de corrientes de secuencia negativa.

Además, se presentan pérdidas adicionales en el devanado amortiguador debido a factores como: armónicos de forma de onda de tensión, corrientes de eddy y pérdidas propias de la conducción de corriente en el devanado amortiguador I^2R. Cuando el generador opera a un porcentaje de carga, las pérdidas se distribuyen de forma simétrica en las barras del devanado amortiguador como se ilustra en la Figura 55, pero cuando el generador opera a una tasa de carga la distribución de las pérdidas y por ende de las temperaturas se concentra en unas barras como lo ilustra la Figura 56, esto debido a la reacción
de armadura en la cual distribución del campo magnético en el entrehierro se distorsiona. [49]

Figura 55. Temperatura de las barras del devanado amortiguador de un generador sin carga.

Fuente:[49]

Figura 56. Temperatura de las barras del devanado amortiguador de un el generador bajo carga.

Fuente:[49]
De acuerdo a la Figura 55 y Figura 56 cuando el generador pasa de vacío a carga, el campo magnético se debilita en el barlovento mientras que se fortalece en el lado de sotavento.

La corriente de Focault y las pérdidas de la barra amortiguadora 1 son significativamente mayores que los de la barra amortiguadora 4. La temperatura de las barras de amortiguación cerca del lado de sotavento es mayor que la del lado situado cerca del barlovento. La temperatura máxima se produce en el centro del eje de la barra 1 del devanado amortiguador y la temperatura mínima se produce al final de la barra 4. Se presenta un aumento de las pérdidas y temperatura de las barras de amortiguación cuando las condiciones de funcionamiento del generador cambian de vacio a carga nominal.[49]

El diseño del devanado amortiguador para el generador síncrono está orientado a actuar bajo pequeños cambios en la velocidad síncrona, que están relacionados a torques reducidos y a pequeñas corrientes, que actúan con el objetivo de mantener la velocidad síncrona constante del rotor. Las dimensiones y la capacidad de corriente del devanado amortiguador son mínimas.

La Figura 57 presenta el caso de un generador síncrono que fue operado de forma incorrecta y tuvo como consecuencia operación inesperada como motor, por tanto el devanado amortiguador funciona como un devanado de arranque, y circuló una gran corriente por el devanado amortiguador.

Figura 57. Falla de sobre calentamiento en barras del devanado amortiguador (a) Estrés térmico, (b) Estrés térmico, (c) Fractura en el anillo de conexión.

La Figura 57, muestra las consecuencias del arranque de un generador como motor asíncrono, la Figura 57 (a), (b) muestra el estrés térmico en la superficie de
la zapata polar, la Figura 57 (c) muestra una ruptura en el anillo de conexión de una de las barras del devanado amortiguador.

Las consecuencias del arranque de un generador como motor asíncrono, son elevadas corrientes circulando por el devanado amortiguador y debido al efecto Joule se eleva la temperatura hasta fundir el material de los devanados y zapata polar donde se encuentran alojadas las barras del devanado amortiguador, realizando una comparación con las figuras mostradas sobre el aumento de temperatura en el devanado amortiguador, se puede saber las áreas del devanado amortiguador en las cuales será mayor la temperatura con mayor probabilidad de falla.

2.3 FALLAS EN EL SISTEMA DE AISLAMIENTO DEL ROTOR

2.3.1 Envejecimiento térmico de materiales aislantes del rotor.

Todos los materiales aislantes y de refuerzo no metálicos se deterioran con el tiempo debido al calor de los devanados. La velocidad a la que se deterioran los componentes de los materiales es una función de sus propiedades térmicas y de las temperaturas a las que están sometidos. Si las valoraciones térmicas de los componentes de los materiales se han seleccionado correctamente, el envejecimiento térmico y el deterioro asociado se producirán gradualmente a lo largo de una vida de servicio aceptable.

Diseños modernos de bobinados de polos salientes usan Nomex en el aislamiento a tierra y en las espiras en devanados strip on edge winding, arandelas laminadas de vidrio en los polos. Para alta temperatura de operación y a su vez están cubiertos de esmalte aislante, y resinas de unión termoestables proporcionan los sistemas de aislamiento que tienen una clasificación térmica de al menos la clase F (155 ºC). Si los materiales se hacen funcionar a una temperatura clase B (130 ºC), deben tener una vida térmica adecuada. Los materiales más susceptibles a la degradación térmica son materiales de unión y refuerzo orgánico, mientras que los componentes inorgánicos tales como la mica, vidrio, y asbestos no se ven afectados a las temperaturas normales de funcionamiento de las máquinas eléctricas. La vida térmica del aislamiento en los puntos calientes de los devanados se reduce significativamente, ya que el margen entre la temperatura de funcionamiento y potencia térmica es mucho menor. Este efecto es mucho más crítico en los sistemas de aislamiento clase B de más edad y son muy difíciles de detectar tales puntos calientes.

Las causas del envejecimiento térmico en los polos salientes pueden ser varias entre ellas se encuentra:
• Los ciclos de arranque y parada que se presenta en los generadores. Y estos arranques y paradas frecuentes causan expansión y contracción del devanado como resultado de las variaciones en la temperatura. El movimiento relativo debido a los diferentes coeficientes de expansión térmica conduce a la abrasión de los materiales aislantes del rotor.
• La sobrecarga o altas temperaturas del aire que llevan a las temperaturas de funcionamiento muy por encima de los valores de diseño.
• Refrigeración inadecuada, que puede ser de carácter general, por ejemplo, el aire de refrigeración o agua insuficiente, o puntos muertos locales en el circuito de refrigeración debido a un mal diseño, fabricación o procedimientos de mantenimiento.
• El uso de materiales que tienen propiedades térmicas inadecuadas y por consiguiente una tasa de deterioro a un ritmo inaceptable, cuando se opera dentro de los límites de temperatura de diseño.
• Sobreexcitación de los devanados del rotor durante largos periodos de tiempo.
• Corrientes de secuencia negativa en bobinas del estátor debido a desequilibrio de tensión del sistema. Lo que conduce a corrientes circulantes en el rotor.

Características comunes de que se está presentando sobrecalentamiento en el rotor de una máquina son deterioro térmico severo, puede dar lugar a cortocircuito entre espiras y/o fallas a tierra. El envejecimiento se puede dar de manera general o localizada.

El envejecimiento térmico general presenta como resultado:
• El ciclo térmico resultante de frecuentes arranques y paradas lleva al agrietamiento de la resina o barniz en las uniones del sistema de aislamiento. Esto provoca el aflojamiento y el movimiento relativo de las partes, lo que conduce a un aumento de la flojedad y abrasión.
• Pérdida entre la unión de los conductores y fragilidad en el barniz o resina de las uniones.
• Contracción térmica de arandelas de los polos y materiales aislantes de refuerzos entre bobinas.
• Fragilidad y oscurecimiento de los materiales del sistema de aislamiento.
• La holgura de los arrollamientos en los polos y la contracción del aislamiento de tierra.
• Distorsión de la forma de los devanados.
• Pérdidas de energía en el devanado de campo.

La Figura 58 presenta un caso de deterioro del aislamiento en puente del rotor.
Se ilustra el deterioro del material aislante en un puente del rotor donde se observa cambio de color del material y pérdida en un tramo, dejando descubierto el conductor.

En este capítulo se presentaron las fallas más comunes presentadas en el rotor de máquinas síncronas, realizando la separación en fallas mecánicas y fallas eléctricas. Las fallas mecánicas y fallas eléctricas se encuentran relacionadas, ya siendo una causa de la otra o viceversa. Además, las fallas mecánicas pueden reflejar consecuencias en la condición eléctrica o magnética de la máquina y fallas eléctricas pueden tener consecuencias en la condición mecánica de la máquina.

Uno de los puntos más sensibles y relevantes de las máquinas síncronas es el sistema de aislamiento, que puede ser alterado por las condiciones térmicas bajo las cuales opera la máquina, desencadenando fallas de magnitudes considerables que pueden alterar la integridad del devanado de campo y el núcleo magnético del rotor.

Se puede evitar o reducir la probabilidad de ocurrencia de fallas en el rotor, implementando planes de mantenimiento rigurosos enfocados a fortalecer las partes más sensibles de la máquina. De esta manera se pueden evitar paradas forzosas y grandes gastos económicos y de tiempo en la reparación de fallas.

En el siguiente capítulo se describirán las fallas más comunes en el estator, siguiendo la misma metodología del presente capítulo.
3. FALLAS EN EL ESTÁTOR DE MÁQUINAS SÍNCRONAS

Las fallas más comunes en los devanados es un corto entre los conductores, esto reduce la capacidad de producir un campo magnético balanceado. A la vez trae otras consecuencias como un aumento en la vibración de la máquina, por ende degradación del aislamiento y daños en el núcleo del estator. Generalmente estos tipos de corto-circuitos aumenta la temperatura y el corto se expande a un corto entre espiras y eventualmente podría destruir la máquina si los sistemas de protecciones no están efectivamente ajustados y operativos.

Principalmente el corto-circuito se da por la pérdida del aislamiento en los conductores del bobinado debido a factores como: incremento de temperatura de operación de la máquina, esfuerzos mecánicos en arranques y paros, presencia de agentes químicos en la máquina, condiciones ambientales a las que este expuesta, esfuerzos eléctricos como sobre-voltajes por perdida repentina de carga.

La Figura 59, muestra la distribución de las causas más comunes de fallas en el estator de un generador síncrono y contaminantes externos.

Figura 59. Causas más comunes de fallas en el estator de generadores y contaminantes externos.

![Causas más comunes de fallas en el estator](image)

 Fuente: [51].

1-Otros, 2- Deterioro del aislamiento, 3-Fallo de fase, 4-Fallas mecánicas, 5-Sobrecarga, 6-Contaminantes externos.

En la Figura 59 (a) se muestra las causas más comunes de fallas en el estator las cuales son: 1-Otros, 2- Deterioro del aislamiento, 3-Fallo de fase, 4-Fallas mecánicas, 5-Sobrecarga, 6-Contaminantes externos e incrementos en la
temperatura de operación. Se observa la gran relevancia que presentan los contaminantes externos en las causas de falla seguido de las sobrecargas. Los planes de mantenimiento enfocados a mantener la maquina en condiciones de higiene y conservación de las partes es importante para una vida útil extensa y así disminuir la probabilidad de falla. En la Figura 59 (b) se muestran los contaminantes externos en el estator del generador los cuales pueden ocasionar:

1. Deterioro térmico debido a la operación a temperaturas más altas que el sistema de aislamiento puede soportar de manera segura.
2. estrés eléctrico a (corto o largo plazo) más alto que el sistema de aislamiento pueda soportar de manera segura.
3. La tensión mecánica de movimiento o vibración debido a condiciones anormales de operación.
4. La contaminación del estator y aislamiento por la suciedad o la humedad.
5. Diseño inadecuado, los procesos de control de calidad de fabricación o aplicación de material.

3.1 FALLAS MECÁNICAS

En la búsqueda de minimizar costos de operación y maximizar el rendimiento de los generadores, las fallas mecánicas tienen un papel muy importante, ya que traen como consecuencias: el deterioro del estator, contaminación, desajuste y aflojamiento del núcleo, reducción de la eficiencia de operación, entre otros conduciendo hasta el reemplazo del generador por completo.

3.1.1 Desajuste de las bobinas del estator en las ranuras.

Las bobinas del estator deben quedar perfectamente ajustadas en las ranuras para soportar los esfuerzos electromagnéticos a los que se ven sometidos por la acción del rotor. Al desajustarse la bobina hace que la bobina se friccione contra la pared de la ranura y origina la pérdida de pintura aislante; cuando el área afectada es suficientemente grande puede originar descargas parciales externas.[52]

La ocurrencia de descargas parciales acelera la pérdida de la pintura conductor, provocando que las descargas incremenent su nivel. Se presenta gran cantidad de generación de ozono por el aire ionizado que ataca químicamente el sistema aislante del generador.

Para evitar que el devanado se afloje, los fabricantes de generadores eléctricos desarrollaron durante los años sesenta un sistema de fijación de bobinas mejorado mediante el uso de rellenos ondulados.

El deterioro típico que sufren las bobinas se muestra en la Figura 60.
En la Figura 60, durante una inspección de un generador retirando algunas cuñas, se pueden apreciar las descargas contra la ranura y las zonas dañadas de pintura conductora.

3.1.2 Contaminación del estator del generador.

Este es un problema típico de los generadores de tipo abierto, con sistema de enfriamiento de aire forzado. A pesar de que se filtra el aire de enfriamiento, si los niveles de contaminación son elevados, las partículas contaminantes son capaces de ingresar al estator y se depositan en los cabezales y láminas del núcleo como se muestra en la Figura 61. La contaminación acumulada propicia la ionización del aire y las bobinas se ven sometidas a la acción de las descargas parciales aun al voltaje de operación.[52]

Una medida para corregir este problema ha sido el uso de filtros de alta eficiencia, la limpieza exhaustiva de los cabezales y el acondicionamiento de pinturas graduadoras cuando los generadores salen a mantenimiento.
3.1.3 Desconexión o falla de las resistencias equipotenciales.

Los generadores con enfriamiento directo por circulación de hidrógeno en los devanados del estator, utilizan ductos dentro de las bobinas para disipar el calor generado por la circulación de corriente. Los ductos están aislados de los conductores de las bobinas para evitar la circulación de corriente. Para evitar diferencias de potencial entre el conductor y los ductos de enfriamiento es necesario conectarlos en uno de los extremos de cada barra, esto se hace con una resistencia de 5 W.

Si por alguna razón se desconecta o se daña la resistencia que los mantiene al mismo potencial, se establece un gradiente eléctrico que produce descargas parciales externas (del orden de 40 nC). Por la localización de la resistencia equipotencial se estima que la zona afectada puede llegar a tener una longitud de unos ocho centímetros.

La salida de los ductos de enfriamiento es una zona crítica debido a que el hidrógeno está a la más alta temperatura antes de pasar a los enfriadores. A pesar de que las descargas no representan un problema para el aislamiento, se ha formulado la hipótesis de que pueden dar lugar a la ignición del hidrógeno. Cuando esto ocurre, el gas pierde sus características dieléctricas al estar altamente ionizado y puede provocar un arqueo entre fases. Este tipo de fenómeno causa severos daños al generador, por lo que es recomendable efectuar el monitoreo continuo de los niveles de descarga. Un fabricante de generadores realiza la supervisión de este fenómeno a través de la medición de señales de radiofrecuencia que circulan en el neutro del generador. [52]

En la Figura 61 se muestra el núcleo del estator con contaminación por factores externos.

Figura 61. Contaminación del estator del generador

Fuente: [54]
3.1.4 Defectos en las conexiones o en la unión de los cabezales del devanado del estator.

Los generadores de centrales hidroeléctricas tienen un diámetro muy grande; un generador de 200 MW tiene un diámetro aproximado de 15 metros. Las conexiones entre grupos de bobinas o las de salida del generador ocupan una longitud del orden de dos tercios del perímetro dependiendo del diseño y del tipo de devanado, ondulado o imbricado.

Por otro lado, un generador hidráulico es capaz de tomar su carga plena en tiempos extremadamente cortos; en cinco minutos, un generador puede estar aportando 200 MW a la red. Esta situación es muy ventajosa desde el punto de vista de operación del sistema, pero genera altos esfuerzos mecánicos originados por los rápidos cambios de temperatura. Los continuos arranques y paros también provocan esfuerzos térmicos en los conductores.

Si las uniones soldadas de los conductores no fueron construidas satisfactoriamente, o si no son capaces de absorber los esfuerzos mecánicos generados por los cambios de temperatura, se generan puntos calientes que deterioran rápidamente el aislamiento y pueden provocar la falla del aislamiento entre fases en las zonas donde el esfuerzo dieléctrico es más alto.

Debido a los elevados niveles de corriente que circulan a través de los devanados del estator, es de suma importancia que la sección soldada cubra cien por ciento del área de unión. Sin embargo, el método de soldadura empleado por los fabricantes no siempre garantizan un área de contacto pleno, por lo que no es extraño encontrar que la zona efectiva de soldadura sea sólo la periferia del conductor. Cuando esto sucede, las altas resistencias de contacto de las uniones provocan elevaciones importantes de temperatura que ocasionan que la resina utilizada en la unión de los cabezales se deteriore por descomposición térmica.[52]

Usualmente, el curado de las resinas empleadas para la fabricación del aislamiento entre conexiones se efectúa a temperatura ambiente; la clase térmica del material es B (130°C). Estos materiales propagan la llama, de manera que el problema más severo es extinguir el fuego que se propaga en el cabezal después de ocurrida una falla en las uniones soldadas. Se pueden utilizar técnicas de prueba con ultrasonido para determinar la relación del área soldada, estableciendo criterios de control de calidad para este proceso.

3.1.5 Aflojamiento del núcleo por pérdida de sujeción mecánica del estator.

El núcleo del estator está fabricado con láminas de acero al silicio y separadores que forman los ductos de enfriamiento. Cada lámina está aislada para minimizar las pérdidas por corrientes parásitas y evitar la elevación anormal de temperatura. Por las dimensiones de los estatores de los generadores
hidráulicos, generalmente no se construyen de una sola pieza, sino que son fabricados en secciones y, dependiendo de su capacidad, se ensamblan en medios, tercios, cuartos, etcétera, los cuales se agrupan en el sitio de montaje.\[52\]

Los esfuerzos mecánicos a los que se ve sometido el generador en operación pueden hacer que se debiliten los medios de fijación del núcleo y provocar serios problemas que pueden originar la falla del estátor. Se tiene conocimiento de un generador donde la vibración provocó que se le desprendieran las láminas que forman los dientes de la ranura, ello ocasiona que el conjunto de laminaciones del paquete en la superficie del diente comience a vibrar libremente hasta provocar la ruptura; la lámina se desprende del núcleo y se incrusta en los cabezales de las bobinas del estátor. Esto afecta el aislamiento de los devanados y puede provocar la falla entre fases por acción de las descargas parciales. En la Figura 62 se muestra la reparación de un paquete de laminación y la falla que se provocó en el cabezal de la bobina del estátor después que el aislamiento se erosionó por las descargas.

Figura 62. Reparación de un paquete de laminación

Fuente:\[55]\]

3.1.6 Daños en el estátor del generador por condiciones anormales de operación.

Las condiciones anormales de operación provocan daños severos a los generadores. Pueden estar sujetos a condiciones de cortocircuito o sincronización fuera de fase que generan esfuerzos térmicos y mecánicos muy severos. La corriente de cortocircuito somete a los aislamientos en los cabezales a esfuerzos similares a los de un esfuerzo de impacto que pueden provocar que el aislamiento se fracture.
Los generadores que operan con baja excitación tienden a sufrir un calentamiento excesivo en los extremos del núcleo, debido al flujo disperso que origina la reacción de armadura. Mientras que el flujo principal en el cuerpo del estator es paralelo a las laminaciones, el flujo en los extremos entra y sale de los extremos del estator en dirección perpendicular a las laminaciones. Las pérdidas en el núcleo, en el sentido perpendicular de la laminación, son típicamente dos órdenes de magnitud más elevadas que para el flujo en el mismo sentido del laminado. Las pérdidas generan un calentamiento adicional que puede alcanzar temperaturas que afecta el aislamiento de las laminaciones; lo cual genera mayor calor, produciendo una reacción en cadena.[52]

Cuando se afecta un número considerable de laminaciones se generan temperaturas tan extremadamente elevadas que pueden fundir el acero del núcleo. Como las bobinas del estator están alojadas en las ranuras en contacto con el hierro, cuando alcanzan una temperatura crítica se produce la falla del aislamiento principal. El daño que se produce al generador es de grandes dimensiones porque se afecta tanto el núcleo como el aislamiento.

3.1.7 Fallas en el núcleo del estator.

El núcleo del estator se estructura a partir de láminas, eléctricamente aisladas entre sí, con la finalidad de disminuir las pérdidas por inducción de corrientes parásitas. Este aislamiento entre las láminas o chapas de los núcleos magnéticos está constituido por baños galvánicos o en caso de sistemas más antiguos por barnices, capas de óxidos, etc. Este aislamiento puede fallar ocasionando contactos físicos entre las láminas. Por otra parte, los núcleos magnéticos están sometidos a importantes intensidades de campos magnéticos, al existir fallas entre las chapas se incrementan las corrientes parásitas ocasionando puntos calientes que pueden llevar a elevar la temperatura, ocasionando el deterioro del aislamiento de los conductores cercanos al sitio de falla.

3.1.7.1 Fallas en el núcleo del estator por sobretensión.

Las fallas por sobretensión ocurren debido al aumento del nivel de esfuerzo del campo eléctrico, que excede la capacidad de aislamiento del devanado del estator del generador.

Una de las consecuencias de esta falla es que generan tensiones inter-laminales, las cuales pueden degradar aún más los aislamientos del hierro. Estas acciones en conjunto pueden llegar a deteriorar por completo los aislamientos y las láminas del núcleo. Lo que generaría un gasto sumamente significativo. [56]
En la Figura 63, se observa acero fundido debido a un corto en las chapas magnéticas del núcleo.

Figura 63. Daño causado en el núcleo del estator.

Fuente: [57].

3.1.7.2 **Fallas en el núcleo del estator por sobrecalentamiento.**
Las principales causas del sobrecalentamiento del estator de un generador radican en:

- Desperfecto en el sistema de refrigeración.
- Sobrecarga o cortocircuito.
- Cortocircuito de varias láminas del estator.

Por esto se utiliza la protección contra sobrecalentamientos del estator mediante relés del tipo imagen térmica, diseñados para reproducir las condiciones de calentamiento. Esta protección cuenta con la desventaja de operar solamente para sobrecalentamientos originados por una sobrecarga y no protege contra los sobrecalentamientos producidos por desperfectos en el sistema de refrigeración o por cortocircuitos de las láminas del estator.

En la actualidad se protege del sobrecalentamiento del estator a través de detectores de temperatura embebidos en varios puntos del enrollado. Estos transmiten cíclicamente su información a un instrumento, el cual al alcanzar en algún punto una temperatura crítica envía la orden de apertura. Mediante este sistema de protección, pueden detectarse calentamientos muy localizados, tales como los que se producen por cortocircuito de las láminas.

En la Figura 64, se observa el daño del núcleo de hierro por sobrecalentamiento generado por un cortocircuito.
Figura 64. Núcleo del estator dañado por sobrecalentamiento.

Fuente: [58]
3.2 FALLAS POR DAÑO O DETERIORO DE AISLAMIENTO DEL ESTÁTOR

El impacto de degradación del aislamiento de un generador difiere dependiendo del diseño del generador eléctrico en cuanto al tipo de sistema de aislamiento utilizado y el tipo de enfriamiento de los diferentes contaminantes externos.

En la Figura 65, se observa que al interior de un generador hay acumulación de residuos contaminantes del ambiente y del lubricante. La ubicación de esta contaminación se observa en el núcleo ferromagnético, bobinado, conexiones, cabezas de bobina.

Figura 65. Contaminación del estátor por agentes ambientales.

Fuente: [57].

La proximidad de productos químicos, de aceites, de vapores corrosivos y de polvo, afectan el rendimiento del aislamiento de los materiales. La aparición de moho y la acumulación de partículas en entornos húmedos y calurosos provocan también la degradación de las características de aislamiento de las instalaciones. Una de las consecuencias de este deterioro del aislamiento son las fallas eléctricas (cortocircuitos y descargas parciales).

3.2.1 Envejecimiento térmico de materiales aislantes del estátor.

Los materiales aislantes se escogen de acuerdo a las condiciones térmicas de la máquina, considerando previamente su disposición. Cada material usado para propósitos de aislamiento, tiene un límite de temperatura, superando este límite, empieza a deteriorarse rápidamente. Por esto, los materiales aislantes deben tener suficiente capacidad dieléctrica, para resistir los esfuerzos dielécticos y serlo suficientemente fuertes para poder soportar las vibraciones y esfuerzos físicos,
a los que estarán sometidos. El deterioro del material aislante es un fenómeno químico, que como resultado trae consigo disminución en la durabilidad mecánica y capacidad dieléctrica.

3.2.2 Fallas eléctricas en el estator de máquinas síncronas.

La naturaleza de las fallas en el devanado del estator es producida por los incrementos de corrientes en la máquina, estas fuerzas causan vibraciones en el generador que afectan los acoplamientos y pueden desplazar la localización original del devanado en las ranuras. Con el fin de evitar grandes costos de mantenimiento, paros extensos, sobrecalentamientos, daños en el laminado del núcleo, deterioro de aislamiento y hasta pérdida completa de la máquina, la falla debe detectarse a tiempo.

Estas fallas en los devanados del estator se producen por corrientes de cortocircuito, sus consecuencias varían dependiendo de la naturaleza y duración. Los cortocircuitos tienen distintos orígenes:[59]

- Por deterioro o perforación del aislamiento del devanado, debido a calentamientos excesivos prolongados, vibraciones, ambiente corrosivo o envejecimiento natural.
- Por problemas mecánicos: rotura de devanados por objetos extraños o contaminación.
- Por sobretensiones debido a maniobras o el generador expuesto a altas tensiones.
- Por factores humanos: falsas maniobras, sustitución inadecuada de materiales.

Los cortocircuitos repentinos en el devanado del estator pueden ser extremadamente perjudiciales. Por otra parte, la evaluación de los daños puede ser difícil, ya que la evidencia puede ser muy confusa. Si la magnitud de sobre-corriente es pequeña, no es probable que sea ningún daño en absoluto. Pero si las corrientes son altas, las indicaciones pueden ser generalizadas y evidentes, por ejemplo, el desplazamiento de las barras, las amarras rotas y grietas en el aislamiento que si no se solucionan a tiempo pueden ser fatales para la integridad del bobinado.

La Figura 66, evidencia las consecuencias de un cortocircuito en el estator de la máquina síncrona.
En la Figura 66, se muestra una falla por cortocircuito. Las altas temperaturas fundieron el cobre de la bobina con el acero al silicio de las chapas magnéticas como se observa en la Figura 66 (a), la bobina sufrió perforación del material aislante como se observa en la Figura 66 (b). Los residuos carbonizados que se observan en la Figura 66 (c), son del aislamiento quemado por el cortocircuito.

3.2.2.1 **Cortocircuito entre espiras del estator.**

Un cortocircuito entre espiras de una misma fase debe ser localizado y el generador desconectado del sistema, debido a que puede convertirse con facilidad en un cortocircuito de fase a tierra comprometiendo el núcleo del estator, dañando gradualmente el aislamiento y las laminaciones. Esta clase de cortocircuito no surge en grandes generadores que poseen una vuelta por fase por ranura (barra Roebel).[60]

En la Figura 67 se observa un cortocircuito entre espiras del estator.
En la Figura 67, se observa un cortocircuito entre espiras del estátor, estos, son bastante fáciles de identificar, pues la falla es muy localizada y puntual. Se observa una zona negra (quemada) y el resto del embobinado en perfecto estado.

En la Figura 68, se representa un cortocircuito entre espiras de la fase L1 del devanado del estátor trifásico.
3.2.2.2 Cortocircuito entre fases.

El cortocircuito entre fases se presenta debido al daño del aislamiento entre dos fases, este tipo de cortocircuitos genera la circulación de elevadas corrientes produciendo daños significativos en el lugar del cortocircuito. Se trata de uno de los cortocircuitos más perjudiciales que puede tener en el estator de un generador, ya que en el caso de no ser despejado rápidamente puede originar la destrucción de las láminas del estator en el área del cortocircuito y el daño total al bobinado del estator. Para detectar el cortocircuito entre fases se utiliza el principio de comparar, en las tres fases, la corriente que circula por el extremo del neutro con la corriente que circula por el extremo de los bornes. Bajo condiciones normales, estas corrientes son idénticas. [60]

Al tener una falla de fase a fase como en la Figura 69, se observa que dos de las tres terminales de las líneas tienen contacto entre sí, y la terminal restante no es afectada.

Figura 69. Falla de fase a fase.

La Figura 69, se representa un cortocircuito entre fase a fase del devanado del estator, se observa que el devanado L1 está en corto con el devanado L3 (Fase a Fase)

3.2.2.3 Cortocircuito entre fase a tierra.

El núcleo del estator se ve forzadamente comprometido cuando tiene lugar un cortocircuito entre fase y tierra del estator de un generador, debido a que, independientemente de la conexión del neutro del generador con respecto a tierra, la carcasa del generador se encuentra conectada a tierra. El daño que originará el
cortocircuito a tierra en las láminas del estator dependerá a la intensidad de la corriente del cortocircuito y al tiempo que circule dicha corriente.

La intensidad de la corriente que circula, para un cortocircuito de fase a tierra en el estator, está condicionada por el tipo de conexión que tiene el neutro del generador. Dicha intensidad será máxima en el caso de que el neutro esté sólidamente conectado a tierra y será mínima si el neutro se encuentra desconectado físicamente de tierra. Las normas de fabricación de los generadores determinan que los mismos resistirán los esfuerzos térmicos y mecánicos que surgen al producirse un cortocircuito de una fase a tierra en sus bornes, siempre que el valor de la corriente de cortocircuito de una fase a tierra se limite al valor del cortocircuito trifásico a través de la utilización de reactores o resistores entre neutro y tierra.

El cortocircuito entre fase a tierra pueden ocasionar dos tipos de reacción dentro del devanado:

- La corriente de falla fluye de la bobina con un aislamiento deteriorado, hacia el nucleó a través de un contacto directo.
- El flujo de corriente se produce a través de un arco eléctrico.

Esta última produce un deterioro del laminado del núcleo debido a que el arco eléctrico concentra la energía de falla en un punto del núcleo de la máquina, los resultados del flujo de corriente en el núcleo producirán sobrecalentamientos en los puntos de falla durante la operación normal, si no se corrige pronto se producirá un deterioro acelerado del aislamiento hasta llegar a un punto de perder totalmente la máquina, esto implicaría grandes costos y un largo período de parada por mantenimiento o compra de nueva máquina. [62]

Con el objetivo de proteger el laminado del núcleo y daños mayores en el devanado del estator, la falla debe detectarse a tiempo. Existe una variedad de estrategias para detectar las fallas entre fase a tierra del devanado del estator dependiendo del método de aterrizar el neutro del generador.

En la Figura 70 se observan daños y quemaduras en las láminas del núcleo, ranuras abierta debido a una falla fase a tierra.
3.2.3 Descargas parciales en el devanado del estator.

Las descargas parciales son descargas eléctricas que cortocircuitan solo parcialmente el material aislante que se encuentra entre dos puntos a diferente potencial, se manifiestan como pulsos de corrientes en un circuito externo.

La importancia de medir estas descargas parciales es que la mayoría de las fallas en generadores, son de naturaleza eléctrica, aun cuando las causas iniciales...
de las mismas no lo sean. Por ejemplo, el aflojamiento de cuñas, que por ende suele ser un problema de origen mecánico, puede dar lugar a la erosión de las capas semi-conductoras en el bobinado del estator, causando descargas parciales en las ranuras y por ultimo una falla del tipo fase a tierra o del tipo fase a fase. Otro ejemplo sería el efecto combinado de las vibraciones y la erosión eléctrica del aislamiento, que pueden dar lugar a una condición en donde la tensión nominal de la máquina, no podrá ser soportada (resistida) por el sistema aislante de las barras, momento en el que se producirá una falla.

Pero, en todos los casos, los niveles de descargas parciales también podrán ser medidos en cada momento del proceso de degradación, y los resultados pueden ser utilizados para realizar el mantenimiento adecuado, o para decidir si es necesario llevar a cabo una operación de rebobinado.

La Figura 72, presenta un esquema de descargas parciales en el generador síncrono.

Figura 72. Esquema de descargas parciales.

A continuación en la Figura 73 se presentan los diferentes tipos de descargas parciales que se presenta en el devanado del estator, esto se visualiza debido a que la frecuencia del pulso de la descarga parcial, es una función de la localización y del tamaño de la cavidad.
Figura 73. Tipos de descargas parciales

En este capítulo se describieron y clasificaron las diferentes tipos de fallas ocurridas en el estator del generador, haciendo la diferenciación en fallas mecánicas, eléctricas y por deterioro del sistema de aislamiento. Se resalta la importancia del aislamiento del devanado del estator ya que en él se presenta el mayor porcentaje de fallas ya sea por factores externos, deterioro y condiciones anormales de operación.

El conocimiento de las fallas descritas brinda las herramientas para tomar acciones preventivas frente a la ocurrencia de falla, fortaleciendo las partes más sensibles relacionadas con las fallas más comunes y ejecutando un monitoreo continuo que evalué el estado de las partes involucradas.
4. FALLAS EN ELEMENTOS DE CONEXIÓN A TIERRA DE GENERADORES SÍNCRONOS

Los generadores síncronos utilizan elementos de conexión a tierra con el objetivo de eliminar las desventajas que se presentan en generadores sin conexión a tierra y los generadores rígidamente aterrizados. Estas desventajas son las elevaciones de tensión cuando ocurre una falla a tierra, por otra parte los generadores rígidamente aterrizados presentan elevadas corrientes de falla.

Los sistemas de puesta a tierra de generadores cumplen funciones relevantes frente a la protección. Las Neutral-Grounding Resistor (NGR) o resistencia de neutro a tierra seleccionadas correctamente pueden limitar las sobretensiones transitorias, reducir riesgos de arco eléctrico, proporcionar continuidad en el servicio y proporcionar la corriente adecuada para la detección de la falla a tierra y la coordinación selectiva.

Las razones para limitar la corriente por NGR son las siguientes razones según [65]

- Reducir efectos de quemaduras y fusión en el equipo eléctrico en falla, tales como transformadores, cables y máquinas rotativas.
- Reducir las tensiones mecánicas en los circuitos y corrientes de falla en elementos de transporte de energía eléctrica.
- Reducir el riesgo de electrochoque al personal causados por corrientes de falla a tierra extraviadas en el camino de retorno a tierra.
- Reducir la explosión de arco o relámpago para el personal que pueda haber causado accidentalmente o que resulte estar en extrema proximidad a la falla a tierra.
- Asegurar el control de las sobretensiones transitorias y al mismo tiempo evitar el cierre de un circuito defectuoso en la aparición de la primera falla a tierra (conexión a tierra de alta resistencia).
- Minimizar el daño producido por fallas a tierra.
- Limitar el esfuerzo del generador ante fallas a tierra externas.
- Limitar las sobretensiones temporales y sobretensiones transitorias sobre el aislamiento del generador.
- Proporcionar medios de detección de fallas a tierra.

En la Figura 74, se presenta una resistencia de puesta a tierra, normalmente la conexión a tierra está formada por varias resistencias de este tipo en diferentes conexiones.
Las NGR pueden ser de dos clases, altas resistencias o bajas resistencias, diferenciadas por la magnitud de corriente de falla que permiten fluir. Las altas resistencias de tierra permiten valores de corrientes de falla de 10 A o menos. Las bajas NGR se utilizan para corrientes de falla de al menos 100 A, con corrientes dentro de una gama habitual de 200 – 1000 A.

Ambas clases de NGR limitan el sobre-voltaje transitorio a niveles seguros (250% de la tensión nominal).

La Figura 75, muestra los puntos de falla que se pueden presentar en una NGR.

El elemento que más falla normalmente es la resistencia, debido a que es sensible a diferentes condiciones ambientales y condiciones de operación.
4.1 FALLA DE CORTOCIRCUITO MONOFÁSICO EN GENERADORES

La falla de cortocircuito monofásico es una de las fallas más comunes con un porcentaje alrededor de 80% de ocurrencia con respecto a fallas bifásicas y fallas trifásicas. Las magnitudes de las variables eléctricas dependen de las características del generador, sistema de transmisión y del método de puesta a tierra.

El método de puesta a tierra debe ser seleccionado de acuerdo a los requerimientos del sistema, considerando las capacitancias, corrientes de cortocircuito, tiempos de liberación de la falla y de la protección, para tener una coordinación apropiada y operación oportuna frente a la ocurrencia de una falla.

Para explicar las características relacionadas con cada método de puesta a tierra se presentan cuatro casos de estudio que se analizaron mediante simulación. A continuación se presentan los casos de estudio en la Tabla 4-1, donde se describe la condición de operación del generador, es decir, el elemento de conexión a tierra y el valor de impedancia en cada uno de los casos.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Condición de operación</th>
<th>Impedancia entre terminales a-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal, sin conexión entre los terminales a-b</td>
<td>Reactancia capacitiva 88419,21 []</td>
</tr>
<tr>
<td>1</td>
<td>Falla monofásica en los terminales del elemento C2 del generador, sin conexión entre los terminales a-b</td>
<td>Reactancia capacitiva 88419,21 []</td>
</tr>
<tr>
<td>2</td>
<td>Falla monofásica en los terminales del elemento C2 del generador, conexión solida entre a-b</td>
<td>Conductor 0,00 []</td>
</tr>
<tr>
<td>3</td>
<td>Falla monofásica en los terminales del elemento C2 del generador, conexión mediante transformador entre terminales a-b</td>
<td>Transformador de puesta a tierra 2947,31 []</td>
</tr>
</tbody>
</table>

Los elementos de conexión a tierra cambian de acuerdo al caso de estudio entre los terminales a y b de la Figura 76, esta figura ilustra el circuito del sistema bajo estudio. Donde se realiza la representación del generador, línea de transmisión y carga eléctrica.
Los parámetros de cada uno de los elementos de la Figura 76, son mostrados en las tablas: Tabla 4-1, Tabla 4-2, Tabla 4-3, Tabla 4-4, donde se muestra las características y magnitud de cada uno de los parámetros del sistema.

Es importante mencionar que la falla monofásica se presenta en el elemento C2, donde este elemento fue reemplazado en la simulación por una resistencia de falla de 0,5Ω.

Tabla 4-2. Parámetros del circuito del generador.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Característica</th>
<th>Magnitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Inductancia de eje directo fase A</td>
<td>10,103 [mH]</td>
</tr>
<tr>
<td>L2</td>
<td>Inductancia de eje directo fase B</td>
<td>10,103 [mH]</td>
</tr>
<tr>
<td>L3</td>
<td>Inductancia de eje directo fase C</td>
<td>10,103 [mH]</td>
</tr>
<tr>
<td>R1</td>
<td>Resistencia fase A</td>
<td>0,038 [Ω]</td>
</tr>
<tr>
<td>R2</td>
<td>Resistencia fase B</td>
<td>0,038 [Ω]</td>
</tr>
<tr>
<td>R3</td>
<td>Resistencia fase C</td>
<td>0,038 [Ω]</td>
</tr>
<tr>
<td>C1</td>
<td>Capacitancia del estator a tierra</td>
<td>0,297 [µf]</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitancia borne fase A</td>
<td>0,003 [µf]</td>
</tr>
<tr>
<td>C3</td>
<td>Capacitancia borne fase B</td>
<td>0,003 [µf]</td>
</tr>
<tr>
<td>C4</td>
<td>Capacitancia borne fase C</td>
<td>0,003 [µf]</td>
</tr>
</tbody>
</table>
Tabla 4-3. Parámetros del circuito de la línea.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Característica</th>
<th>Magnitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4</td>
<td>Inductancia de eje directo fase A</td>
<td>1,365 [mH]</td>
</tr>
<tr>
<td>L5</td>
<td>Inductancia de eje directo fase B</td>
<td>1,365 [mH]</td>
</tr>
<tr>
<td>L6</td>
<td>Inductancia de eje directo fase C</td>
<td>1,365 [mH]</td>
</tr>
<tr>
<td>R4</td>
<td>Resistencia fase A</td>
<td>0,042 []</td>
</tr>
<tr>
<td>R5</td>
<td>Resistencia fase B</td>
<td>0,042 []</td>
</tr>
<tr>
<td>R6</td>
<td>Resistencia fase C</td>
<td>0,042 []</td>
</tr>
</tbody>
</table>

Tabla 4-4. Parámetros de la carga.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Característica</th>
<th>Magnitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>L7</td>
<td>Inductancia de eje directo fase A</td>
<td>25,687 [mH]</td>
</tr>
<tr>
<td>L8</td>
<td>Inductancia de eje directo fase B</td>
<td>25,687 [mH]</td>
</tr>
<tr>
<td>L9</td>
<td>Inductancia de eje directo fase C</td>
<td>25,687 [mH]</td>
</tr>
<tr>
<td>R7</td>
<td>Resistencia fase A</td>
<td>21,91 [Ω]</td>
</tr>
<tr>
<td>R8</td>
<td>Resistencia fase B</td>
<td>12,91 [Ω]</td>
</tr>
<tr>
<td>R9</td>
<td>Resistencia fase C</td>
<td>12,91 [Ω]</td>
</tr>
</tbody>
</table>

4.1.1 Generador sin puesta a tierra y sin falla monofásica, Caso 0.

El caso 0 se basa en el funcionamiento normal del generador, es decir, sin falla cuando este se encuentra sin conexión a tierra entre los terminales a y b de la Figura 76.

A continuación se muestran los resultados de la simulación en terminales del generador en la Tabla 4-5, se observa que los niveles de tensión están balanceados al igual que los niveles de corriente en las terminales del generador y no se presenta flujo de corriente o tensión en el neutro del sistema.

Tabla 4-5. Resultados de simulación de generador sin puesta a tierra y sin falla monofásica.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Fase A</th>
<th>Fase B</th>
<th>Fase C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión</td>
<td>12,71 [KV]</td>
<td>12,71 [KV]</td>
<td>12,71 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>770,75 [A]</td>
<td>770,75 [A]</td>
<td>770,75 [A]</td>
</tr>
<tr>
<td>Terminales a-b neutro a tierra del generador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>0,0 [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corriente</td>
<td>0,0 [A]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La Figura 77 y Figura 78, ilustran las formas de onda de tensión y corriente respectivamente para el caso de operación normal de generador sin puesta a tierra.

Las formas de onda son sinusoidales y además los niveles de tensión y corrientes se encuentran balanceados.

Figura 77. Ondas de tensión en terminales del generador del caso 0.

Figura 78. Ondas de corriente en terminales del generador del caso 0.

Fase A [Verde], Fase B [Rojo], Fase C [Azul].
Fase A [Verde], Fase B [Rojo], Fase B [Azul].

4.1.2 Generador sin puesta a tierra y con falla monofásica, Caso 1.

El caso 1 se basa en el funcionamiento bajo falla monofásica en el elemento C2 (Fase A) del generador de la Figura 76, cuando este se encuentra sin conexión a tierra entre los terminales a y b.

En la Tabla 4-6, se muestran los resultados de la simulación en terminales del generador bajo falla y se comparan con los resultados obtenidos en el generador sin falla, se observa que los niveles de tensión están desbalanceados, la fase A presenta una gran caída de tensión de 11,87 kV y una elevación de corriente de 941,16 A. Por otro lado la Fase C presenta una elevación de tensión de 6,62 kV y una elevación de corriente de 400,93 A.

Por otro lado la tensión del neutro del generador se eleva en 9,19 kV Y circula una corriente de 1,0 A, a través de la capacitancia de neutro a tierra.

Tablas 4-6. Comparación de resultados del generador bajo condiciones de falla monofásica sin puesta a tierra con resultados sin falla.

<table>
<thead>
<tr>
<th>Magnitudes en terminales del generador con falla</th>
<th>Magnitudes en terminales del generador sin falla</th>
<th>Variaciones respecto a la condición sin falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>0,84 [KV]</td>
<td>12,71 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>1711,91 [A]</td>
<td>770,75 [A]</td>
</tr>
<tr>
<td>Fase B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>16,35 [KV]</td>
<td>12,71 [KV]</td>
</tr>
<tr>
<td>Fase C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>19,33 [KV]</td>
<td>12,71 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>1171,68 [A]</td>
<td>770,75 [A]</td>
</tr>
<tr>
<td>Terminales a-b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>9191,68 [V]</td>
<td>0,00 [V]</td>
</tr>
<tr>
<td>Corriente</td>
<td>1,0 [A]</td>
<td>0,0 [A]</td>
</tr>
</tbody>
</table>

Figura 79 y Fase A [Verde], Fase B [Rojo], Fase B [Azul].
Figura 80, ilustran las formas de onda de tensión y corriente respectivamente para el caso de operación de falla monofásica en la fase A del generador sin puesta a tierra. Los niveles de tensión y corrientes se encuentran desbalanceados.

Figura 79. Onda de tensión en terminales del generador del caso 1.

Fase A [Verde], Fase B [Rojo], Fase B [Azul].

Figura 80.Ondas de corriente en terminales del generador del caso 1.

Fase A [Verde], Fase B [Rojo], Fase B [Azul].
4.1.3 Generador conectado rígidamente a tierra y con falla monofásica, Caso 2.

El caso 2 se basa en el funcionamiento bajo falla monofásica en el elemento C2 (Fase A) del generador de la Figura 76, cuando este se encuentra conectado rígidamente a tierra entre los terminales a y b.

En la Tabla 4-7, se muestran los resultados de la simulación en terminales del generador bajo falla y se comparan con los resultados obtenidos en el generador sin falla, se observa que los niveles de tensión están desbalanceados, en este caso la fase A presenta una gran caída de tensión de 10,71 kV y una elevación de corriente de 2870,85 A. Las otras dos fases presentan variaciones despreciables.

Se observa también que la tensión del neutro del generador es cero por estar rígidamente puesto a tierra y se presenta una circulación de corriente de 3044,09 A.

Tabla 4-7. Comparación de resultados del generador bajo condiciones de falla monofásica conectado rígidamente a tierra con resultados sin falla.

<table>
<thead>
<tr>
<th></th>
<th>Magnitudes en terminales del generador con falla</th>
<th>Magnitudes en terminales del generador sin falla</th>
<th>Variaciones con respecto a la condición sin falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>2,00 [KV]</td>
<td>12,71 [KV]</td>
<td>-10,71 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>3641,60 [A]</td>
<td>770,75 [A]</td>
<td>2870,85 [A]</td>
</tr>
<tr>
<td>Fase B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>12,70 [KV]</td>
<td>12,71 [KV]</td>
<td>-0,01 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>841,46 [A]</td>
<td>770,75 [A]</td>
<td>70,71 [A]</td>
</tr>
<tr>
<td>Fase C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>12,71 [KV]</td>
<td>12,71 [KV]</td>
<td>0,00 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>770,75 [A]</td>
<td>770,75 [A]</td>
<td>0,00 [A]</td>
</tr>
<tr>
<td>Terminales a-b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>0,00 [V]</td>
<td>0,00 [V]</td>
<td>0,00 [V]</td>
</tr>
<tr>
<td>Corriente</td>
<td>3044,09 [A]</td>
<td>0,00 [A]</td>
<td>3044,09 [A]</td>
</tr>
</tbody>
</table>

Las Figura 81 y Figura 82 muestran las formas de onda de tensión y de corriente bajo condiciones de falla, en las cuales se muestra en desbalance de tensión en la fase A y el aumento de corriente de la misma.
Figura 81. Ondas de tensión en terminales del generador caso 2.

Figura 82. Ondas de corriente en terminales del generador caso 2.
4.1.4 Generador conectado mediante transformador de puesta a tierra y con falla monofásica, Caso 3.

El caso 3 se basa en el funcionamiento bajo falla monofásica en el elemento C2 (Fase A) del generador de la Figura 76, cuando este se encuentra conectado mediante transformador de puesta a tierra entre los terminales a y b.

En la Tabla 4-8, se muestran los resultados de la simulación en terminales del generador bajo falla y se comparan con los resultados obtenidos en el generador sin falla, se observa que los niveles de tensión están desbalanceados, en este caso la fase A presenta una gran caída de tensión de 11,87 kV y una elevación de corriente de 943,28 A. Las otras fases también se ven afectadas, la fase C presenta una elevación importante de tensión de 6,62 kV y un aumento de corriente de 400,93 A.

Se observa también que la tensión el neutro del generador aumenta a 9,186 kV y la corriente aumenta a 3,12 A.

Tabla 4-8. Comparación de resultados del generador bajo condiciones de falla monofásica conectado mediante transformador de puesta a tierra con resultados sin falla.

<table>
<thead>
<tr>
<th></th>
<th>Magnitudes en terminales del generador con falla</th>
<th>Magnitudes en terminales del generador sin falla</th>
<th>Variaciones con respecto a la condición sin falla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>0,84 [KV]</td>
<td>12,71 [KV]</td>
<td>-11,87 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>1714,03 [A]</td>
<td>770,75 [A]</td>
<td>943,28 [A]</td>
</tr>
<tr>
<td>Fase B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>16,34 [KV]</td>
<td>12,71 [KV]</td>
<td>3,63 [KV]</td>
</tr>
<tr>
<td>Fase C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>19,33 [KV]</td>
<td>12,71 [KV]</td>
<td>6,62 [KV]</td>
</tr>
<tr>
<td>Corriente</td>
<td>1171,68 [A]</td>
<td>770,75 [A]</td>
<td>400,93 [A]</td>
</tr>
<tr>
<td>Terminales a-b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>9186,02 [V]</td>
<td>0,00 [V]</td>
<td>9186,02 [V]</td>
</tr>
<tr>
<td>Corriente</td>
<td>3,12 [A]</td>
<td>0,00 [A]</td>
<td>3,12 [A]</td>
</tr>
</tbody>
</table>
Figura 83. Ondas de tensión en terminales del generador.

Fase A [Verde], Fase B [Rojo], Fase B [Azul].

Figura 84. Ondas de corriente en terminales del generador.

Fase A [Verde], Fase B [Rojo], Fase B [Azul].
Caso 1

El caso uno de falla presenta elevaciones de tensión considerables en las fases que no se encuentran en falla y la fase comprometida en la falla presenta una disminución del nivel de tensión bastante considerable debido a la resistencia de la falla de 0,5 Ω. En un sistema con neutro aislado, la aparición de una falla a tierra no afecta la operación pero pone al sistema en una condición muy riesgosa, ya que la falla creará una condición de cortocircuito con corriente de falla considerable y además fluye una corriente de retorno a través de la capacitancia del generador que produce un aumento de tensión a través del neutro del generador y afecta la tensión en las fases sin falla.

Cuando se presenta un cortocircuito monofásico en un generador, se produce un desbalance de tensiones, y aumento de la corriente asociada a la fase en falla, como muestran los resultados de la simulación 941,16 A.

Por su parte la corriente del neutro del generador no presenta un aumento considerable y por tanto no pone en peligro la operación del generador.

Las elevaciones transitorias de tensión, pueden desencadenar en la formación de arcos, estas sobretensiones transitorias son una característica y desventaja propia de los generadores sin conexión a tierra. A continuación se explicará el desarrollo de estas sobretensiones.[69]

La amplitud de las sobretensiones está especialmente ligada a la conexión del neutro del sistema a tierra. Si el sistema está aislado a tierra, en general las tensiones son elevadas, ya que no existe posibilidad de descarga de las capacitancias de secuencia cero del generador.

El tiempo de funcionamiento de un sistema con neutro aislado en condiciones de falla debe ser limitado, para minimizar riesgos.

Los sistemas sin conexión a tierra presentan dos ventajas principales. La primera es operativa debido a que la primera falla a tierra en un sistema causa el flujo de una pequeña corriente de neutro a tierra, por lo que el sistema puede ser operado con una falla a tierra presente, mejorando la continuidad del sistema.[66]

La segunda es económica, ya que no se requieren gastos de equipamiento de tierra o conductores del sistema de puesta a tierra.[66]
Caso 2

El caso 2 presenta elevación de corriente en la fase en falla (fase A), en un valor de 3641,60 A, pero las demás fases no se afectan significativamente por esta falla y permanecen prácticamente en sus valores iniciales respecto al caso 0.

Cuando ocurre una falla se produce un desbalance en las tensiones del generador, lo cual causa una circulación de corriente por el neutro que presenta una magnitud bastante elevada de 3044,09 A.

En este tipo de método de puesta a tierra no se presenta riesgo de sobretensiones, pero si es preocupante el nivel de corriente de la fase en falla, debido a que puede generar daños en el núcleo del estator y el sistema aislante del mismo por sobrecalentamiento, este tipo de daño depende del punto en que se presente la falla a tierra.

Caso 3

Los transformadores de puesta a tierra al igual que las RNG limitan la corriente de falla monofásica a valores mínimos, que permitan la correcta operación de las protecciones y que no se altere el funcionamiento del generador.

La reactancia de aterrizaje tiene como objetivo hacer que la reactancia capacitiva total a tierra del generador sea igual o aproximadamente igual a la reactancia inductiva de aterrizaje, con el fin de que estas reactancias se cancelen y hagan que la corriente que circula por el neutro en una falla sea muy cercana a cero.

Una desventaja de este método es que su comportamiento frente a fallas a tierra es muy similar al del caso 1, donde no se realiza conexión a tierra del neutro ya que también se presentan elevaciones de tensión considerables. Los cálculos para determinar las características del transformador y la resistencia se muestran en el Anexo.

Esta es una configuración de alta impedancia, donde la resistencia instalada en los terminales secundarios del transformador se afecta por la relación de transformación al cuadrado y de esta forma incrementa la impedancia en los terminales primarios de conexión neutro a tierra del generador.
4.2 FALLAS EN RESISTENCIAS DE PUESTA A TIERRA

Las resistencias de puesta a tierra son componentes mecánicos y están sujetos a fallas mecánicas. A pesar de que las resistencias no poseen partes móviles hay otros factores que afectan su integridad. Las resistencias de puesta a tierra fallan debido a descargas atmosféricas, motivos bruscos, sobrecargas, corrosivos en la atmósfera, cambios extremos de temperatura, corrientes de tercer armónico, defectos de fabricación y por vibraciones, estos factores deterioran las resistencias o las ponen bajo condiciones de operación que superan los límites de diseño acelerando el proceso de deterioro y finalizando su vida útil.

4.2.1 Fallas mecánicas en resistencias de puesta a tierra.

Durante un falla fase a tierra, la corriente fluye desde el devanado del generador a través del conductor de la fase en falla y a tierra, retornando a la fuente, el devanado como se indica en la Figura 85, cuando el generador no se encuentra aterrizado se producen sobretensiones en las fases diferentes a la fase en falla, pero si se encuentra aterrizada mediante una resistencia de puesta a tierra no se presentaran sobretensiones.

Figura 85. Falla a tierra en la fase A, y camino de retorno de corriente en rojo.

Cuando se produce una eventualidad en una NGR, el modo de fallo suele ser de circuito abierto, dejando el camino de tierra con el regreso abierto. Y dejando el neutro del generador conectado a una gran reactancia capacitiva. La protección que se utiliza con mayor frecuencia que detecta la corriente de falla a tierra no funcionara con una resistencia abierta, y se pierden las ventajas de una resistencia de puesta a tierra.[70]
El accionamiento involuntario con un sistema inoperante y la protección de falla a tierra sin protección a tierra se puede evitar mediante el uso de un monitor continuo de resistencia de puesta a tierra.

La implementación de NGR puede limitar daños de fallas, eliminar sobretensiones transitorias, reducir el riesgo de arco eléctrico, proporcionar continuidad en el servicio con una falla a tierra y proporcionar un nivel de corriente adecuado para la detección y coordinación selectiva de las protecciones.

El modo de fallo de un NGR suele ser de circuito abierto, la NGR se construye de tira de alambre de resistencia o metal enrollado y envuelto alrededor con aislamiento de porcelana. Los conjuntos de resistencias se agrupan de acuerdo a la necesidad de la aplicación. Un NGR se puede cortocircuitar accidentalmente durante su construcción o mantenimiento. A diferencia de un circuito abierto en una NGR, un cortocircuito da como resultado un sistema eléctrico estable. La circulación de corriente durante una falla a tierra hará que la falla sea clarificada por la protección de sobre-corriente [70].

La falla de circuito abierto de la NGR convierte un sistema con resistencia de neutro a tierra en un sistema sin conexión a tierra. Sin continuo monitoreo de la NGR, no hay ninguna indicación de que el sistema está sin conexión a tierra. Los operadores no serían conscientes de que la corriente de detección de falla a tierra ya no es operativa y de que existe el riesgo de sobretensiones transitorias frente un evento de falla a tierra monofásico.

Un NGR en circuito abierto no puede detectarse, el sistema normalmente sigue funcionando hasta que la resistencia abierta es descubierta después de un evento. De vez en cuando, las resistencias abiertas se evidencian durante el mantenimiento preventivo, pero no siempre es posible.

La NGR puede permanecer cerrada hasta que se produce una falla a tierra. El calentamiento producido por la potencia disipada I^2R sobre la soldadura rota, causa la expansión y luego causa que la soldadura rota se abriera. Esto ilustra la necesidad de un seguimiento de la NGR para detectar un fallo en un sistema donde un fallo a tierra solo se indica mediante una alarma. La medición de la resistencia de la NGR durante el mantenimiento solo proporciona la confirmación de que la NGR se encuentra bien en el momento.
Por otra parte, el NGR podría fallar en cualquier momento después de que se tomara la medida, o incluso que no se conectara después de la medición donde el mantenimiento implica probar relés de falla a tierra mediante una falla intencional. Un NGR con soldaduras rotas probablemente sea la causa de la acción del nitrato de amonio y la tensión mecánica sobre la soldadura, esta sal formada por iones de nitrato y de amonio sumada con tensiones mecánicas produce agrietamientos en soldaduras de conductores, las grietas por corrosión-fatiga es una forma de corrosión por esfuerzo donde estas se concentran en un punto y se profundizan.[71]

Una NGR abierta no es una condición que deba ser autorizada a permanecer en el sistema cualquier periodo de tiempo. Además, han existido casos donde las NGR desconectadas para pruebas no se han vuelto a conectar.

4.2.2 Fallas eléctricas en resistencias de puesta a tierra.

4.2.2.1 Fallas eléctricas en resistencias de alta impedancia.
El uso de altas resistencias de puesta a tierra permite el funcionamiento continuo de las máquinas eléctricas en una condición de falla a tierra, ya que limita el nivel de corriente a valores reducidos menores a 10 A. Pero la persistencia de la falla a tierra puede deteriorar el aislamiento y producirse un fallo de cortocircuito entre espiras. En relación al número de espiras cortocircuitadas, se puede alcanzar un valor de corriente correspondiente a varias veces la corriente nominal.

El fallo a tierra del devanado del estator también puede llevarse a cabo por el calentamiento asociado al deterioro del aislamiento a tierra a partir de una formación de arco a un fallo sólido que se evidencia por un considerable flujo magnético, una espira del devanado del estator cortocircuitada a su vez pudo
causar calentamiento local y dañar el aislamiento de tierra al grado de que la falla se intensifique a una falla fase-fase, causando considerables daños en la máquina. [72]

4.2.2.2 Sobrecarga en resistencia de puesta a tierra.

La sobrecarga es un exceso de flujo de corriente que supera el valor estimado de operación de la resistencia. Se puede dar por errores en los cálculos de la resistencia.

La Figura 87 presenta un ejemplo de falla parcial de componentes de la resistencia de puesta a tierra, en donde piezas cortocircuitadas disminuyen la resistencia a tierra, lo que conduce a mayores sobrecargas térmicas y finalmente a una apertura de la resistencia de puesta. Esta apertura se presenta en la Figura 88.

Figura 87. Falla parcial de los componentes de la NGR piezas cortocircuitadas de la NGR disminuyen su resistencia.

Figura 88. Falla de ruptura en resistencia de puesta a tierra causada por sobrecarga.
4.3 FALLAS EN CONDUCTORES DE PUESTA A TIERRA

Los componentes del sistema de puesta a tierra están instalados sobre y bajo tierra y ambas situaciones están expuestas a un amplio rango de condiciones ambientales. En aire, puede haber humo de plantas industriales, o agua de lluvia que ha disuelto material en el aire. Bajo tierra, el ambiente húmedo puede incluir minerales presentes en forma natural, sustancias químicas, o sustancias contaminadas que han sido enterradas. El sistema de puesta a tierra es una parte crítica del sistema de energía eléctrica, ya que está expuesto a diferentes agentes que pueden deteriorarlo.[74]

Existen varios tipos de corrosión:

Corrosión en aire
La corrosión en el aire es causada normalmente por reacción química en agua lluvia que ha disuelto gases presentes en el aire o por partículas de polvo de procesos industriales. También puede ocurrir corrosión debido a conexiones bimetálicas no apropiadas o contacto con otros materiales. Este tipo de corrosión es la menos problemática y generalmente puede ser controlada por buenas prácticas de construcción, incluyendo selección de materiales de contacto necesarios.[74]

Corrosión subterránea
La corrosión subterránea se da normalmente de dos formas: la corrosión general uniforme que avanza hacia una pérdida total en el peso del componente y la corrosión de desgaste en áreas pequeñas, selectivas. Además, puede presentarse un voltaje residual permanente en la instalación eléctrica que puede afectar la tasa de corrosión (influenciada por la corriente alterna) o causar acción electrolítica en el entorno (Influenciada por corriente continua).

El suelo puede ser neutro, ácido o alcalino; el estado relativo de suelo se presenta en la escala pH.

La acción química se dará entre el metal y cualquier ácido o alcalino de solución en el suelo. La tasa de corrosión será influenciada por la nobleza del metal, es decir; menor su nobleza, más rápidamente se corroee.[74]

Los sistemas de puesta a tierra conforman un elemento importante de generador síncrono, ya que brindan la posibilidad de protegerlo frente a posibles eventos de fallas a tierra.

Los elementos de conexión neutra a tierra, deben ser seleccionados de acuerdo a las características de cada generador, de esta manera se tiene certeza de las
variables eléctricas que se presentaran en este elemento y además se puede realizar una buena coordinación de las protecciones.

La sobretensión es el fenómeno con mayor probabilidad de ocurrencia cuando se presentan fallas a tierra y estas fallas a tierra establecen el mayor número de fallas, alrededor del 90 % en los sistemas eléctricos. Por tal motivo se hace relevante el estudio y empleo de los elementos de conexión a tierra.

La Figura 89 ilustra las consecuencias de corrosión subterránea en conductores de sistemas de puesta a tierra, la corrosión puede llegar al punto de consumir por completo una sección del conductor y de esta manera dejar el sistema sin conexión a tierra.

Figura 89. Corrosión en conductores subterráneos.

Fuente:[75]
5. PROTECCIONES ASOCIADAS A CADA UNA DE LAS FALLAS.

A continuación se presentan tablas Tabla 5-9, Tabla 5-10 y Tabla 5-11, en las que se asocia cada protección a una falla específica. Además se aclara que en ciertas fallas no se tienen protecciones asociadas como tal. Para detectar este tipo de fallas se realizan inspecciones y mantenimientos de manera periódica.

Tabla 5-9. Protecciones del rotor.[76]

<table>
<thead>
<tr>
<th>Protecciones del rotor</th>
<th>Falla</th>
<th>Descripción</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desalineación de ejes de generador y turbinas</td>
<td>Inspección y Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Desequilibrio del rotor del generador</td>
<td>Inspección y Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Excentricidad del rotor del generador</td>
<td>Vibración de cojinetes</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Descargas electrostáticas en cojinetes</td>
<td>Inspección y Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Abrasión en los cojinetes</td>
<td>Inspección y Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Daño por formación de óxido de estaño en los cojinetes</td>
<td>Inspección y Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Calentamiento excesivo de los cojinetes</td>
<td>Sobre temperatura de los cojinetes (RTD)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Ampollas de hidrogeno en los cojinetes</td>
<td>Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Fatiga mecánica en los cojinetes</td>
<td>Mantenimiento</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ejes Doblados</td>
<td>Monitoreo de Vibraciones</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Grietas en ejes</td>
<td>Monitoreo de Vibraciones</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Falla de cortocircuito entre espiras del devanado de campo</td>
<td>Sobre corriente en el devanado de campo</td>
<td>76/59F</td>
<td></td>
</tr>
<tr>
<td>Falla de pérdida de excitación</td>
<td>Pérdida de excitación (Impedancia)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Falla</td>
<td>Descripción</td>
<td>ANSI</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>
| Falla a tierra del devanado de campo | - Protección de sobretensión contra falla a tierra
- Relé de voltaje en la excitatriz
- Sobre corriente DC | - 64F
-59F
-76F |
<p>| Desgaste desigual de anillos deslizantes | Inspección y Mantenimiento | -- |
| Manchas en anillos deslizantes | Inspección y Mantenimiento | -- |
| Huellas sobre los anillos | Inspección y Mantenimiento | -- |
| Envejecimiento térmico de materiales aislantes del rotor | Inspección y Mantenimiento | -- |</p>
<table>
<thead>
<tr>
<th>Protección del estator</th>
<th>Falla</th>
<th>Descripción</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desajuste de las bobinas del estator en las ranuras</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Contaminación del estator del generador</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Desconexión o falla en las resistencias equipotenciales</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Defectos en las conexiones o en la unión de los cabezales del devanado del estator</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pérdida de la sujeción mecánica del estator, aflojamiento del núcleo</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cortocircuito entre espiras del estator</td>
<td>Diferencial</td>
<td>87G</td>
<td></td>
</tr>
<tr>
<td>Cortocircuito entre fases</td>
<td>Diferencial</td>
<td>87G</td>
<td></td>
</tr>
<tr>
<td>Cortocircuito entre fases a tierra</td>
<td>100% Tierra estator Falla a tierra</td>
<td>59 GN / 27 TN 64G</td>
<td></td>
</tr>
<tr>
<td>Sobretensión en el núcleo del estator</td>
<td>Sobre voltaje</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Sobrecalentamiento en el núcleo del estator</td>
<td>Térmica del estator (RTD / modelo térmico)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Descargas parciales en el devanado del estator</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Envejecimiento térmico de materiales aislantes del estator</td>
<td>Inspección y Mantenimiento</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 5-11. Protecciones de elementos de puesta a tierra.[78]

<table>
<thead>
<tr>
<th>Falla</th>
<th>Descripción</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruptura de soldaduras en resistencias puesta a tierra</td>
<td>Monitoreo</td>
<td>--</td>
</tr>
<tr>
<td>Sobrecarga en resistencias de puesta a tierra</td>
<td>Monitoreo</td>
<td>--</td>
</tr>
<tr>
<td>Sobre-corriente en resistencias de puesta a tierra</td>
<td>Monitoreo</td>
<td>--</td>
</tr>
<tr>
<td>Sobretensiones en resistencias de puesta a tierra</td>
<td>Monitoreo</td>
<td>--</td>
</tr>
<tr>
<td>Fallas en conductores de puesta a tierra</td>
<td>Monitoreo</td>
<td>--</td>
</tr>
</tbody>
</table>

Se han establecido acciones frente a las fallas por medio de la implementación del sistema de protección el cual responde a las fallas más comunes que se presentan en el generador síncrono.

En algunos casos las protecciones no se han ajustado a algunas fallas del generador debido a que su impacto permite la operación del generador hasta que se llega a un punto crítico, frente a estas fallas se han asociado elementos de monitoreo continuo y acciones de inspección y el mantenimiento periódicos que permiten determinar el estado de las partes del generador.

Las protecciones se realizan de acuerdo a la importancia del generador, ya que estas tienen un costo considerable de acuerdo al nivel de potencia del generador y la relevancia de que mantenga su operación.
CONCLUSIONES

Las fallas están ligadas al estado en que se encuentran las diferentes partes del generador y es un hecho que en la actualidad no se dispone de un material bibliográfico bien estructurado y que describa las diferentes fallas que se puedan presentar para facilitar la programación de oportunas acciones de mantenimiento enfocados en asegurar un buen estado de las partes de la máquina y permitir un conocimiento que pueda ser utilizado para disminuir la probabilidad de ocurrencia de falla mejorando los diseños de los elementos involucrados, por esta razón se ha realizado este documento que se enfoca en la descripción de los diferentes tipos de fallas que ocurren en las partes de los generadores síncronos.

Los generadores síncronos hidráulicos son máquinas complejas que están conformadas por una gran cantidad de partes, las cuales desempeñan un papel frente a su operación. Es importante conocer cada una de las partes del generador para asociar las posibles fallas que se puedan presentar en un momento dado.

La descripción de las fallas presentadas en el rotor de los generadores síncronos permite determinar las posibles fallas que se pueden presentar, además de la probabilidad de ocurrencia y su impacto en la operación del generador. De acuerdo a la descripción de las fallas presentadas en el rotor de los generadores síncronos se pudo determinar una relación entre la naturaleza mecánica y la naturaleza eléctrica, es decir, alteraciones en el funcionamiento mecánico inciden en el funcionamiento eléctrico del generador y viceversa.

Debido a que el rotor del generador es un elemento que debe permanecer en movimiento, las fallas relacionadas con su sistema de rotación afectan de manera relevante el estado del generador, ya que pueden forzar su parada, impidiendo el proceso de conversión de energía, dando lugar a pérdidas económicas y sanciones. Este conocimiento brinda las herramientas para fortalecer procedimientos encaminados a la disminución de probabilidad de falla de la máquina en el rotor.

La descripción de fallas presentadas en el estator permite un análisis de las fallas más comunes que se presentan en el estator, con el fin de poder hacer una evaluación de la protección completa del estator ya que la protección de casi el 100% de los devanados del estator es fundamental para garantizar su confiabilidad, evitando costos elevados en el mantenimiento del generador y reduciendo el número de interrupciones prolongadas del servicio, lo que mantiene la continuidad del suministro.

Un elemento crítico del estator es su sistema de aislamiento, debido a que todas las fallas eléctricas están ligadas a su estado. El deterioro del aislamiento en diferentes puntos de devanado está ligado a una determinada falla, ya sea falla a
tierra o falla entre fases. Este tipo de falla además de afectar el estado del devanado afecta el núcleo del estator siendo relevante frente a los costos derivados de reparación y tiempo sin operar.

La descripción de fallas presentadas en el sistema de puesta a tierra de generadores síncronos permite conocer las ventajas y desventajas de los diferentes métodos de puesta a tierra. Por otra parte, permite conocer los riesgos que se corren al tener un generador sin conexión a tierra frente a una falla fase a tierra. Es relevante el monitoreo continuo a los elementos de conexión a tierra de generadores síncronos para ejercer una protección adecuada del generador.

Se asociaron las fallas más comunes a sus elementos de protección, pero se encontró que hay fallas en las cuales su naturaleza no permite aplicar una protección determinada, este hecho se relaciona con las fallas de tipo mecánico donde no hay una variable a la cual asignar un elemento de protección, por tanto se realiza monitoreo continuo de variables mecánicas o e inspecciones periódicas en las cuales se determina el estado de las partes asociadas.
TRABAJOS FUTUROS

Como trabajos futuros se propone:

- Realizar el análisis matemático a cada una de las fallas que sea posible.
- Investigar sobre métodos para el diagnóstico y la detección de las fallas.
- Describir las diferentes protecciones asociadas a cada una de las fallas desarrolladas.
ANEXO

Calculo del transformador y resistencia de puesta a tierra del generador.[25]

Datos del generador

Potencia nominal: 30MVA
Voltaje nominal: 22000 V (línea a línea), 12701,70 V (Fase)
Frecuencia: 60 Hz

Capacitancias por fase:
Estátor del generador \((C_e)\): 0,297µf
Capacitancia en borne \((C_b)\): 0,003µf
Total: 0,3µf

La reactancia capacitiva por fase es la siguiente:
\[X_c = \frac{1}{2 \cdot \pi \cdot 60 \cdot 0,3\mu f} = 8841,9 \Omega \]

La resistencia primaria del generador es como sigue:
\[R_{NPRI} = \frac{X_c}{3} = 2947,3 \Omega \]

La relación del transformador de neutro a tierra: es como sigue:
\[n_{NGT} = \frac{12,7 kV}{249 V} = 53 \]

La máxima corriente primaria de falla es como sigue:
\[I_{FGPRI} = \frac{12,7 kV}{2947,3\Omega} = 4,309 A \]

La resistencia del secundario es como sigue:
\[R_{NSEC} = \frac{2,469k\Omega}{53^2} = 1,049 \Omega \]

La máxima corriente del secundario del transformador bajo falla es como sigue:
\[I_{FGPRI} = \frac{240 V}{1,049\Omega} = 228,789 A \]

La potencia disipada durante una falla es como sigue:
\[P_{FAULT} = 240 V \times 228,78 A = 54,9 kW \]
REFERENCIAS

[55] INDUCOR INGENIERIA S.A., “Pruebas de baja induccion en estatoros de grandes generadores y motores core imperfection detection –elcid test-.”

[61] S. Bojic, D. Bozic, and M. Pavlica, “Refurbishment of Small Hydro Power Plant,” no. Figure 2, pp. 0–4.

5-130

