Variantes constructivas de paneles para el control en el proceso de soldadura por puntos

En el circuito de encendido de los tristores se empleó un transistor de una sola unión (UJT) como eje central para la conformación de los impulsos de disparo de los tristores de potencia en sustitución de circuitos más costosos que los tradicionalmente utilizados en accionamientos eléctricos automatizados.

En el trabajo se desarrolló un novedoso circuito sostenedor de la corriente de soldadura constante, desde el punto de vista electrónico, lo cual en las máquinas convencionales se logra mediante variaciones en la presión de los electrodos.

El diseño de la primera variante de panel de control fue concebido con el uso de componentes analógicos, mientras que en el segundo caso se empleó programable, que toma en cuenta todas las particularidades del proceso de soldadura (características del material a soldar y de los electrodos, entre otros).

RESUMEN

En el presente trabajo se diseñaron y construyeron dos variantes de paneles de control, así como la estructura mecánica de una máquina de soldadura por puntos, lo cual permitió construir un prototipo con un novedoso sistema de control automático de alta fiabilidad, de bajo costo de producción, de fácil operación y magnifica calidad en la soldadura.

ABSTRACT

In the present work was designed two variants of control panels, and the mechanic structure for an spot welding machine, that allow construct a prototype with a new automatic control system with high efficiency, low cost and easy to operate with high quality of welding.

In the firing board of SCR was employed an UJT transistor as center
for the conformation of firing pulses on power SCRs to substitute of other most expensive circuits.

In this work was developed a novel circuit for maintaining constant current during welding process from the electric point of view.

The design of first variant of control panel was conceived to use the analogic components, and the other to use a programmable control to consider such variables like base metal and electrode materials, and others.

1. INTRODUCCIÓN

La soldadura por resistencia se conoce desde la década del 70 del siglo pasado, la misma se caracteriza por la gran velocidad de calentamiento en la zona de unión y su poca dependencia respecto a los procesos de emisión térmica, produciéndose una unión inseparable, en la cual el calentamiento de la pieza metálica en el punto de unión, va acompañado de la aplicación de presión para obtener la soldadura, calentando el metal por debajo de su punto de fusión.

El trabajo surge para dar respuesta a la solicitud realizada por los Talleres de Vagones de la División Centro de los Ferrocarriles de Cuba y de la Base Aérea, en los cuales se necesita disponer de una puentadora que permita dar mantenimiento y recuperar los coches ferroviarios, correspondientemente.

Como resultado del trabajo se diseñó y construyó un prototipo de máquina de soldadura por puntos, altamente fiable, de bajo costo de operación y producción y de gran seguridad para el operador, además se le incorporó un lazo de control para mantener la corriente de soldadura constante dentro de ciertos intervalos permisibles. El panel de control permitió, además, poner en marcha una antigua puntea-dora de la base aérea.

El circuito de disparo de los tiristores de potencia se construyó con un UJT como dispositivo fundamental, en sustitución de los circuitos altamente costosos, tradicionalmente empleados en los accionamientos eléctricos automatizados. Finalmente al prototipo construido se le realizaron diversas pruebas de laboratorio para el análisis de las uniones soldadas por especialistas del Centro de Investigaciones de la Soldadura de la UCLV, los cuales consideraron que la máquina se encontraba lista para ser instalada en los talleres de vagones de Santa Clara, ya que satisface todas las exigencias tecnológicas de este tipo de máquina.

2. DESARROLLO

La soldadura por resistencia tiene una gran importancia económica, determinada por su elevada productividad, por la posibilidad de unir piezas sin emplear materiales de aporte ni fundentes, por la relativa facilidad de mecanización del proceso, por no desprender gases tóxicos, ni polvos, así como la ausencia de rayos infrarrojos y ultravioletas, permitiendo su ubicación con menores requerimientos de protección y sin necesidad de ventilación compleja.

Las máquinas de soldadura por resistencia se clasifican de diferentes formas, las cuales poseen tres elementos comunes fundamentales:

- Transformador de potencia (TPS): reduce el voltaje de línea a un valor entre 2 y 10V, suficiente para alcanzar corrientes entre 10 y 100 KA.
- Parte mecánica: posibilita la sujeción y compresión neumática o mecánica de las piezas que representan esfuerzos del orden de las centenas de Kg.
- Dispositivos de mando y control: regulan las corrientes de soldadura, los tiempos de soldadura, forja y recuperación, etc.

El desarrollo de la soldadura por resistencia ha abierto amplias perspectivas en diversas ramas de la producción, tal como la industria automovilística, aeronáutica y ligera, encargada de producir cestos, fogones, radiadores, etc. En éstas, prácticamente se ha sustituido la técnica del remachado y otras técnicas de soldadura de láminas finas, por la soldadura de resistencia con un incremento sustancial de la automatización de la misma.

Actualmente existen diferentes métodos de soldadura por resistencia, pero el más utilizado en el país es el de la soldadura por puntos, en el cual se unen piezas mediante puntos independientes.

En la figura 1 se representa el principio de operación de una punteadora.

![Esquema general y circuito equivalente](image)

Figura 1: Representación del proceso

2.1 Diseño y construcción de la punteadora SPOT-MACH

Para la construcción mecánica de la punteadora se utilizó materia prima recuperada de los talleres de...
vagones de la división Centro de Ferrocarriles de Cuba y para transformar la energía eléctrica de la red industrial (220 V, 60 Hz) se utilizó un transformador de 10 KVA, que en régimen de cortocircuito puede entregar, según catálogos internacionales, 20 KVA; lo cual representa 20 KA para un voltaje secundario de 1 Volts, lo cual puede soldar láminas de acero de todo tipo de 0.8 - 4 mm de espesor.

Para la automatización del proceso de soldadura, se desarrolló un novedoso sistema de mando y regulación de la potencia de soldadura lo cual se muestra en forma de diagramas de bloque, en la figura 2.

![Diagrama de bloque del Sistema de Mando y Regulación.](image)

Para el control de la potencia de soldadura se utilizó un regulador estático de tensión (RET) de corriente alterna, el cual variando el voltaje de entrada del transformador de potencia de soldadura (T.P.S.) varía la corriente de soldadura, los circuitos de potencia y amplificación de los impulsos se muestran en la figura 3.

![Regulador estático de tensión.](image)

El RET está gobernado por un circuito de disparo, encargado de hacer conducir los tiristores de potencia con un ángulo de retardo de conductividad con respecto al cruce por cero de la onda de voltaje a partir de un voltaje de control.

Para mantener la corriente de soldadura constante se le incorporó a la máquina un circuito controlador de la corriente a lazo cerrado, el cual se ajusta según las tablas de ajuste óptimo de la firma SIEMENS, y los métodos descritos en [4]. El diagrama de bloques del regulador de corriente se muestra en la figura 4.

![Diagrama de bloque y funciones transferenciales del regulador de corriente.](image)

Los circuitos temporizadores implementados con monostables son compatibles con cualquier tipo de máquina y satisfacen las exigencias tecnológicas de los mismos. Además a la máquina construida se le incorporaron circuitos de señalización de gran utilidad.

3. SISTEMA INTELIGENTE, CON MICROPROCESADOR, PARA EL CONTROL DE UNA MÁQUINA DE SOLDADURA POR PUNTO

3.1 Diseño del hardware del sistema

El hecho de que la máquina posea bloques de control y temporización, hace pensar que es posible la utilización de un sistema inteligente que ligado a la parte de control de potencia pueda resultar una máquina de soldar de gran versatilidad. Para este diseño se seleccionó el microprocesador de la Zilog Z-80.

Este sistema microprocesador tiene entre sus tareas atender a los órganos interafaz hombre-máquina:

- Teclado
- Display de dos dígitos
- LEDs indicadores
- Indicación de alarma

El teclado cuenta con tres teclas funcionales. La inferior derecha tiene doble tarea, la de seleccionar el tiempo que se quiere modificar en estado de programación y la de arrancar el proceso de soldadura; las restantes dos teclas son para aumentar o disminuir la constante de tiempo de cada etapa. Otro elemento de la interfaz hombre máquina, es el display donde se muestra el tiempo en cuestión, el cual está compuesto por dos LED tipo siete segmentos, el número que aparece está dado
en segundos y puede llegar como máximo a 99 segundos. Finalmente dos elementos de indicación visual son previstos, el primero es un LED que indica alarma por sobrecorriente y el segundo, es un LED, para indicar en que parte del proceso se encuentra la máquina.

El sistema fue diseñado bajo el criterio de utilización de hardware mínimo permisible para la realización de las tareas necesarias en la máquina, por tal motivo se usa la técnica de selección lineal para direccionar cada uno de los dispositivos utilizados en el sistema. Estos elementos direccionados son el banco de memoria compuesto por 1Kbyte de memoria tipo PROM (2708) y 1Kbyte de memoria física RAM (2114x2).

Por otro lado, se tiene una interfaz programable paralela (8255) usada funcionalmente para manejar los dispositivos de interface dispuestos en el panel frontal que se muestra en la figura 5.

De forma general la conexión entre el puerto y estos dispositivos. La interfaz programable es direccionada directamente por un terminal de control (IORQ) además se conecta directamente al bus de datos y se direccionan sus puertos con los bit A0 y A1; también se seleccionan los terminales de lectura y escritura con la combinación de las señales IORQ y WR/RD del micro.

Se programan sus puertos en el modo 0 de forma tal que el puerto A se programa de salida, la parte alta del puerto C como entrada, su parte baja de salida conjuntamente con el puerto B. A través del puerto A se realiza la atención al display compuesto por dos dígitos de LED de siete segmentos. Para ello se divide el puerto de 8 bit en dos cuartetos, por la cual se saca el dato en BCD y para la interface de conexión BCD-7 segmento se usa un 7447.

Con el puerto C se atiende por encuesta el teclado compuesto por tres botones como se indicó, haciendo un barrido de un cero para encontrar la tecla seleccionada en cada instante. Se dedicó el puerto B como bandera indicadora visual, ya que cuenta con cinco LED que indican las funciones siguientes: L1: Tiempo de soldadura, L2: Tiempo de forja, L3: Tiempo de recuperación, L4: Indica que se puede comenzar la soldadura, L5: Indicador de alarma.

3.2. Software, programa principal

El programa principal marcado con la etiqueta MAIN comienza con una etapa de inicialización, donde se carga de ROM a direcciones indexadas sucesivas las constantes gravadas del tiempo de soldadura, forja y recuperación. También se carga el registro BC con el tiempo IX y D con 1 que indica que está en el estado de programación del tiempo de soldadura, inmediatamente se llama la subrutina ONLED, encendiendo el LED correspondiente a este estado y seguido la subrutina DISPLAY, para visualizar inicialmente este valor en el display. En este momento el programa comienza a atender por encuestas el teclado, a través del puerto C del 8255, cuando sea seleccionada una de las tres teclas, realizará la función necesaria. Si es presionada la tecla UP se incrementa el tiempo para el estado seleccionado y retorna a la subrutina ONLED, anteriormente mencionada, donde se actualiza el valor de la constante de tiempo; si es oprimida DOWN sucede lo mismo, sólo que la constante de tiempo es decrementada.
tada. Si en lugar de las anteriores se oprime la tercera y última tecla disponible (SELECT) se llama a la subrutina SELECT, la cual pasa al próximo estado. Si el estado es uno, dos o tres (o sea programación de las constantes de tiempo) regresa al ONLED inicialmente indicado; si de otro modo el estado seleccionado es el cuatro, se llama la subrutina ALARMA para inspeccionar los tiempos programados y, a través del puerto B, indicar mediante el LED alarma que ha ocurrido anomalías en la programación de los tiempos, desde el punto de vista tecnológico de la soldadura, quedando resetiada la máquina. Cumpliendo los requisitos técnicos se pasa al estado cuatro, que significa que todo está preparado para comenzar un ciclo de soldadura (existe la posibilidad de oprimir SELECT para volver a reprogramar los tiempos). El diagrama en bloques funcionales aparece en la figura 6.

3.2.1. Subrutina ONLED. Esta subrutina cuestiona la bandera entregada por SELECT o la inicializada por el sistema (registro D) para encender o activar el LED, indicador del estado actual, también en los casos de la programación de los tiempos actualiza las localizaciones de memoria en los cuales se cargan los tiempos de cada uno de los estados. Vea figura 7.

3.2.2. Subrutina DISPLAY. La siguiente subrutina es la encargada de detectar el estado presente y carga en el registro BC el tiempo seleccionado, convierte este valor en dos cuartetas BCD que envía al puerto A del 8255. Este valor será mediante el hardware descodificado a siete segmentos y se visualizará finalmente en el display. Vea la figura 8.

3.2.3. Subrutina SELECT. La subrutina etiquetada con el nombre SELECT, figura 9; tiene como función pasar internamente de un estado a otro para programar o realizar la soldadura según la indicación del LED afin. Esta subrutina marca en una bandera el estado para el cual se realizará la programación, lo que ocurre del siguiente modo:

Bandera = 1, programación del tiempo de soldadura.
Bandera = 2, programación del tiempo de forja.
Bandera = 3, programación del tiempo de recuperación.
Bandera = 4, preparado para comenzar soldadura.
3.2.4. Subrutina SOLDAR. Al ser invocada esta subrutina se efectúa un ciclo de soldadura completo. Esta comienza llamando la subrutina DISPLAY para indicar en pantalla el tiempo de soldadura e irá en decremento en la medida que pase cada segundo, para esta se tiene la subrutina DELAY que cuenta un segundo. Luego, al detectar la subrutina que no termina el ciclo, pasa al punto uno del programa principal que con SELECT se cambia al siguiente estado e invoca nuevamente la subrutina SOLDAR; así sucesivamente hasta que se detecte el fin del ciclo de soldadura y retorna a la dirección siguiente a la que fue llamada. El esquema de esta subrutina aparece en la figura 10.

Figura 10. Subrutina SOLDAR.

3.2.5. Subrutina de disparo.

Figura 11 Subrutina de disparo.

En la siguiente subrutina figura 11 se hace cambiar el nivel en el pin cuatro del puerto B, para cortar un transistor que permite la llegada de los pulsos de disparo a los tríptores auxiliares, a través del circuito con U7T. Esta subrutina envía la palabra de control por el puerto B del 8255. Cuestionando la bandera (registro D) se determina cuando finaliza el tiempo de soldadura, inhibiendo el envío de los disparos.

4. CONCLUSIONES

1. En el trabajo se desarrollaron dos prototipos de circuitos de control para las máquinas de soldadura por puntos, garantizándose una corriente constante durante la ejecución del proceso. Para ello se emplearon criterios de diseño propios, por ser este un aspecto no tratado detalladamente en la bibliografía consultada.

2. Desde el punto de vista mecánico, el prototipo desarrollado brinda la posibilidad de ajustar el cabezal inferior (fijo) y de obtener esfuerzos de hasta 900 kgf, lo que la hace compatible, en este sentido, a sus similares ofertados en el mercado internacional que no sean accionadas neumáticamente.

3. Los circuitos de disparo, amplificación de impulsos y el regulador estático de tensión (RET) de corriente alterna funcionan correctamente. Es necesario señalar que una cuestión de elevada importancia, es velar por la simetría en la onda del voltaje de salida del RET, que puede provocar Amperes-vuelta magnetizantes en el transformador por el secundario y saturarlo, pudiendo dañar los tríptores de potencia.

4. Se verificó la calidad y fiabilidad del U7T como eje fundamental del circuito de disparo de los tríptores, reconociendo además el ahorro económico que su uso encierra.

5. Se implementó el circuito sostenedor de corriente constante, demostrándose que el controlador debe ser proporcional integral (PI) además se propuso un método de ajuste, no obstante el regulador puede dejarse sólo con ganancia proporcional si la constante eléctrica a compensar (te) es muy pequeña.

6. El circuito con el PI brinda resultados prácticos satisfactorios para ambos tipos de variantes constructivas (analógica y digital).

5. BIBLIOGRAFÍA

[2.] CRESPO, I. E., MARISY, C., Semiconductores de...

Editorial Universidad Central de Las Villas, Santa Clara, 1989.

AUTORES

Eneldo López Monteagudo

Rodolfo Arias García

Arnaldo Valdés Carrazana

CE: ucldri@ucentral.quantum.inf.cu