Determinación de los parámetros de una máquina síncrona por el ensayo de respuesta en frecuencia

RESUMEN

En este trabajo se estudia la forma de identificar los parámetros de una máquina síncrona mediante el ensayo de respuesta en frecuencia a máquina parada (SSFRT). Se realiza una introducción a la teoría y la práctica del ensayo SSFRT, haciendo énfasis en el procedimiento propuesto en el estándar IEEE 115 [1]. Luego se presenta un método de cálculo de los modelos de la máquina síncrona usando los datos obtenidos en un ensayo SSFRT y finalmente se calculan los parámetros del modelo de una máquina después de realizar el ensayo SSFRT en el laboratorio de Máquinas Eléctricas de la Universidad del Valle utilizando un programa de ajuste de curvas desarrollado en lenguaje de programación Java.

Palabras Claves
Parámetros, Máquina síncrona, Frecuencia, Modelos.

ABSTRACT

This paper illustrates the way to identify the synchronous machine model parameters by using the SSFRT Test proposed in the IEEE Std 115a. A brief introduction about theory and practice of the method is done showing a method to calculate the parameters of the model of a synchronous machine. Finally, the developed
method is applied to the calculus of the parameters of a synchronous machine from the Electrical Machinery Laboratory of the Universidad del Valle by using an application done in the JAVA programming language.

keywords
Synchronous machine, Modeling, Parameters, Frequency Response.

1. INTRODUCCIÓN

Un ensayo de respuesta en frecuencia consiste en medir los parámetros eléctricos -voltajes y corrientes- de un sistema eléctrico tratándolo como una red de dos puertos con el objetivo de obtener una red equivalente que describa su respuesta satisfactoriamente (figura 1). Este ensayo se realiza en el dominio de la frecuencia lo que permite obtener una red pasiva válida para señales en un rango específico de frecuencias.

El SSFRT presenta las siguientes ventajas frente a otros métodos de obtención de parámetros de una máquina síncrona:
- Otros métodos estándar se basan en la medida de transitorios grandes. Como tales, son susceptibles a cambios en la saturación durante la medida.
- No tienen la precisión y la resolución suficientes para la obtención satisfactoria de un modelo para un turbo - generador con híbrido sólido o para aplicaciones como el análisis de control de excitación.
- El SSFRT provee datos para obtener los parámetros en el eje q.
- El SSFRT puede realizarse sin la necesidad de una máquina motriz.
- En el SSFRT la máquina no se somete a corrientes o esfuerzos mecánicos que puedan causar daños.

Entre las desventajas del SSFRT se encuentran:
- El nivel de flujo durante las medidas es mucho menor que el flujo nominal pero se ha comprobado experimentalmente[2] que aunque las corrientes sean mucho menores que las nominales, el SSFRT da resultados útiles.
- Los modelos obtenidos no incluyen información sobre la saturación ni el efecto cruzado de saturación.

2. TEORÍA DEL MÉTODO

Usando la transformación de Park[3], se puede llegar a modelos de máquinas síncronas aplicables en el análisis de estabilidad en sistemas de potencia. Los modelos de orden superior consideran dos circuitos equivalentes, uno para el eje directo (eje d) y otro para el eje en cuadratura (eje q). El circuito en eje d contiene 2 pares de terminales, uno para el inducido y el otro para la excitación. El circuito en eje q tiene solo un par de terminales, los terminales del inducido. En la figura 2 se muestran los circuitos equivalentes.

![Circuito del SSFRT](image)

Figura 1. Sistema eléctrico con 4 terminales determinado mediante un ensayo de respuesta en frecuencia.

Figura 2. Circuitos equivalentes en ejes d y q

LI	Inductancia de fuga del estator.
Ld	Inductancia mutua estator rotor por eje directo.
Lkd	Inductancia mutua de dispersión del circuito amortiguador - circuito de campo, por eje directo.
Rkd	Resistencia del circuito amortiguador k.
Lkq	Inductancia mutua estator - rotor por eje en cuadratura.
Rkq	Resistencia del circuito amortiguador k.

Energía y Computación, Volumen IX, No. 2 - Segundo Semestre de 2000 - Edición No. 16
Usando estos circuitos equivalentes en ejes d y q y a las ecuaciones para los voltajes de Park se llega a una formulación operacional de los enlaces de flujo en los dos ejes [4].

$$
\psi_d(s) = l_d(s)i_d(s) + g(s)v_d(s)
$$

$$
\psi_q(s) = l_q(s)i_q(s)
$$

Donde las inductancias l_d y l_q en función de s se denominan inductancias operacionales y reflejan el comportamiento tanto en estado estable como transitorio de la máquina. La función $g(s)$ se denomina función de excitación y da cuenta de la transferencia entre el circuito de campo y el circuito de eje d. Estos parámetros operacionales se expresan como funciones de s.

$$
l_d(s) = l_d \cdot \frac{1 + a_{11}s + a_{12}s^2}{1 + b_{11}s + b_{12}s^2}
$$

$$
g(s) = \frac{l_{gf}}{r_f} \cdot \frac{1 + c_{11}s + c_{12}s^2}{1 + b_{11}s + b_{12}s^2}
$$

$$
l_q(s) = l_q \cdot \frac{1 + d_{11}s + d_{12}s^2}{1 + e_{11}s}
$$

Finalmente se factorizan los polinomios para obtener las funciones en las cuales aparecen las constantes de tiempo propias de los regímenes transitorios de las máquinas síncronicas.

$$
l_d(s) = l_d \cdot \frac{(1 + T_{d1}s)(1 + T_{d2}s)}{(1 + T_{d0}s)(1 + T_{d0}s)}
$$

$$
g(s) = \frac{l_{gf}}{r_f} \cdot \frac{1 + T_{01}s}{(1 + T_{d0}s)(1 + T_{d0}s)}
$$

$$
l_q(s) = l_q \cdot \frac{1 + T_{q1}s}{1 + T_{q0}s}
$$

Con estas ecuaciones para enlazamientos de flujo pueden obtenerse las expresiones para voltajes en ejes d y q usando:

$$
v_d(s) = R_d i_d(s) + s\psi_d(s) + \omega\psi_q(s)
$$

$$
v_q(s) = R_q i_q(s) - \omega\psi_d(s)
$$

Debe notarse que los circuitos de la máquina síncrona en eje d y eje q no existen físicamente, sólo son un artificio para entender mejor el funcionamiento de la máquina. Esto significa que no se tienen a disposición los terminales correspondientes con los circuitos en eje d y eje q y que el ensayo de respuesta en frecuencia no se puede realizar a menos que existan regímenes de funcionamiento de la máquina en los que se comporte como el circuito equivalente en eje d y otro en el que se comporte como el circuito equivalente en eje q.

![Figura 3. Interpretación física de las variables de Park o diagrama de Park [1]](image)

La fuerza magneto-motriz (FMM) de cada fase, distribuida sinusoidalmente en el espacio, se puede representar como un vector en dirección del eje de la fase, cuya magnitud es proporcional a la corriente instantánea por fase. La combinación de las fuerzas magneto - motrices de las tres fases se representa como otro vector (fmmm), resultado de la suma de los tres vectores de fmm de cada fase. Este vector es giratorio y de magnitud constante, si las fases se alimentan con corrientes sinusoidales desplazadas 120°.

Se entiende por eje directo, el eje del campo creado por el rotor que en el caso de las máquinas de polo saliente coincide con el eje del núcleo polar mientras el eje q es el eje que atraviesa el espacio interpolar.

La proyección del vector de fmm resultante en el eje directo (fmmnd) y en el eje en cuadratura (fmmq) es igual a la suma de las proyecciones de los vectores de fmm de cada fase. Así la corriente id puede interpretarse como la corriente instantánea de una bobina de armadura ficticia que rotar a la misma velocidad que la bobina de campo y que permanece en la posición en que su eje coincide con el eje directo de la bobina de campo. La corriente id tiene una magnitud tal que origina una fmm en este eje, igual a fmm.

La corriente iq se puede interpretar de la misma forma que la corriente id, excepto que actúa sobre el eje en cuadratura en vez del eje directo.

Condiciones prácticas de medida del circuito en eje directo

Analizando el diagrama de Park de la figura 3 y lo dicho anteriormente se puede concluir que:

Si se hacen circular corrientes de fase tales que:

$$
I_a = I \text{ Sen } \omega t = 0
$$

$$
I_b = I \text{ Sen } \omega t - 120^\circ = \sqrt{3} I
$$

$$
I_c = I \text{ Sen } \omega t + 120^\circ = -\sqrt{3} I
$$

Se obtiene una fmm que se encuentra estacionaria con
respecto al estator y cuya magnitud es igual a la de fmmr.
Como \(i_a = 0 \), entonces se puede abrir la fase a sin cambiar las condiciones expuestas. Si se conecta las fases a y b en serie con una fuente de voltaje logrados
que \(i_b = i_c \).
Ahora solo es preciso que el eje del vector de fmmr coincida con el eje d o q según sea el caso. Los esquemas de medida de las figuras 4 y 5 corresponden con las condiciones antes expuestas.

Puede usarse el valor de corriente directa de \(R_a \), porque es fácil de medirse y su contribución a la impedancia es solo significativa a bajas frecuencias. \(L_d(s) \) es la inductancia operacional de eje directo. Es la razón de la transformada de Laplace de los enlaces de flujo de armadura por eje directo y la transformada de Laplace de la corriente de eje directo, con la bobina de campo en corto - circuito.

Figura 4. Esquema para la medida de la respuesta del circuito en eje directo.

Figura 6. Impedancia operacional de eje directo

Figura 5. Esquema para la medida de la respuesta del circuito en eje en cuadratura.

Figura 7. Impedancia operacional de eje en cuadratura

Mediciones a realizar
Según el estándar IEEE115a, se requieren las siguientes mediciones en el ensayo de respuesta en frecuencia a máquina parada:
Medición de la magnitud y la fase de las cantidades:

\[
Z_d(s)Z_q(s) \frac{i_d(s)}{i_q(s)}
\]

\(Z_d(s) \) es la impedancia operacional de eje directo definida como:

\[
Z_d(s) = \frac{v_d(s)}{i_d(s)} = R_a + sL_d(s)
\]

\(R_a \) es la resistencia de armadura por fase.

\(Z_q(s) \) es la impedancia operacional de eje en cuadratura:

\[
Z_q(s) = \frac{v_q(s)}{i_q(s)} = R_a + sL_q(s)
\]

\(R_a \) es la misma que en \(Z_d(s) \).
\(L_q(s) \) es la inductancia operacional de eje en cuadratura
Es la razón de la transformada de Laplace de los enlaces de flujo de armadura por eje en cuadratura y la transformada de Laplace de la corriente de eje en cuadratura.
Además de las impedancias operacionales de
Determinación de los parámetros de una máquina síncrona por el ensayo de respuesta en frecuencia

armadura, se debe medir una tercera cantidad:

\[
\frac{i_f(s)}{i_d(s)} = s G(s)
\]

Donde: \(G(s) \) es la función de transferencia de armadura a campo.

Debe medirse además la magnitud y la fase de \(Zafo(s) \), necesaria para hallar la inductancia mutua entre el campo y el devanado del estator \(Lad \) por eje directo.

\[
Lad = \lim_{s \to 0} \left[- \frac{1}{s} Zafo(s) \right]
\]

\(Zafo(s) \) es la impedancia de transferencia de armadura a campo:

\[
Zafo(s) = \frac{e_{fd}(s)}{i_d(s)} \bigg|_{i_d=0}
\]

La máxima frecuencia para el ensayo debe ser algo mayor que el doble de la frecuencia nominal del generador que se prueba, por ejemplo, 200Hz para una máquina de 60 Hz. Una densidad de medicas satisfactoria es de 10 puntos por década de frecuencia logarítmicamente espaciados.

De las funciones de transferencia anteriores, los datos de placa y la inductancia de fuga del devanado del estator \((L_l) \) se puede obtener un conjunto completo de parámetros de un generador síncronico.

Las condiciones de medida y las condiciones de la máquina para la medida se encuentran definidas en [1].

3. OBTENCIÓN DE RESULTADOS

La máquina utilizada para el ensayo fue el generador síncronico de polos salientes MG2 del laboratorio de Máquinas Eléctricas de la Universidad del Valle con una potencia aparente de 4KVA, 220 Voltios, 10.5 A, 1200 rpm.

El equipo básico de laboratorio fue un osciloscopio digital con memoria y un generador de funciones de potencia (0.0001Hz a 1KHz, máximos valores pico: 100Vp, 200mAp).

Los puntos se tomaron manteniendo una corriente de armadura pico de 150mA, esto es aproximadamente el 1% de la corriente nominal pico. Durante la prueba fue necesario hacer ajustes manuales de esta corriente cada vez que se consideró necesario aunque se recomienda la utilización de un sistema amplificador de voltaje corriente con respuesta plana en el rango de frecuencias a trabajar, para mantener de forma automática el nivel de corriente deseado.

La obtención de los parámetros de un modelo a partir de los datos obtenidos en el ensayo de respuesta en frecuencia de la máquina estudiada requiere el ajuste de datos a un modelo previamente seleccionado para...
obtener coeficientes que reflejan el valor de los parámetros de la máquina según se describe en [4], para esto es necesario manipular una cantidad considerable de información y el uso de procedimientos iterativos o métodos numéricos, lo que hace necesario utilizar una herramienta de cálculo.

La herramienta es un programa para computadora elaborado en un lenguaje orientado a objetos (Java 1.1) descrito en [4] en el que se usa el procedimiento de obtención del modelo mostrado en el apéndice del estándar IEEE 115a [1]. El proceso de ajuste descrito en [1] se inspira en el conocido modelo de los mínimos cuadrados sumando las desviaciones de las partes real e imaginaria por separado para obtener el error total de las funciones de transferencia ajustadas con respecto a las funciones medidas.

En el caso del estudio realizado, se realizó una adaptación del método a la determinación de los errores basado en medidas de magnitud y fase, obteniendo el error total como el error porcentual de magnitud más el error porcentual de fase.

En las figuras desde la 10 hasta la 13 se comparan los datos medidos con las respuestas (o datos calculados) de los circuitos obtenidos mediante el proceso de ajuste.

Realizando el proceso de ajuste antes descrito incluyendo a Zafo(s) en el cálculo del error en eje directo, se llega a los modelos en eje directo y en cuadraura mostrados en las tablas 1 y 2. Las bases usadas son:

\[
\begin{align*}
\text{Ra}_\text{base} &= \frac{0.22^2 \times 1000}{4} = 12.10 \, \Omega \\
\text{L}_{\text{base}} &= 12.10 \, H
\end{align*}
\]

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor</th>
<th>Valor [p.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>0.41570000</td>
<td>0.03435000</td>
</tr>
<tr>
<td>L1</td>
<td>0.00610100</td>
<td>0.00050420</td>
</tr>
<tr>
<td>Lad</td>
<td>0.00775900</td>
<td>0.00064130</td>
</tr>
<tr>
<td>Rfd</td>
<td>0.15930000</td>
<td>0.01317000</td>
</tr>
<tr>
<td>Lfd</td>
<td>0.00012500</td>
<td>0.0001033</td>
</tr>
<tr>
<td>L1d</td>
<td>0.00000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>R1d</td>
<td>12.8500000</td>
<td>1.0620000</td>
</tr>
<tr>
<td>L1d</td>
<td>0.00113700</td>
<td>0.00009395</td>
</tr>
<tr>
<td>L12d</td>
<td>1.210E-10</td>
<td>1.00E-11</td>
</tr>
<tr>
<td>R2d</td>
<td>1.0500000</td>
<td>0.08675000</td>
</tr>
<tr>
<td>L2d</td>
<td>0.00264800</td>
<td>0.00021880</td>
</tr>
</tbody>
</table>

Tabla 1. ModeloEnEje3 obtenido mediante el proceso de ajuste.

Figura 10. Zd(s) Medida vs. calculada.

Figura 12. Zafo(s) Medida vs. calculada.

Figura 11. sG(s) Medida vs. Calculada.

Figura 13. Zq(s) Medida vs. calculada.
Determinación de los parámetros de una máquina síncrona por el ensayo de respuesta en frecuencia

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor [Ohmios/Henrios]</th>
<th>Valor [p.u.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>0.40060</td>
<td>0.03311</td>
</tr>
<tr>
<td>LI</td>
<td>0.00610</td>
<td>0.00050</td>
</tr>
<tr>
<td>Laq</td>
<td>0.00497</td>
<td>0.00041</td>
</tr>
<tr>
<td>R1q</td>
<td>1.16000</td>
<td>0.09589</td>
</tr>
<tr>
<td>L1q</td>
<td>4.58E-10</td>
<td>3.78E-11</td>
</tr>
<tr>
<td>R2q</td>
<td>0.0121</td>
<td>0.0010</td>
</tr>
<tr>
<td>L2q</td>
<td>6053.00</td>
<td>500.20</td>
</tr>
</tbody>
</table>

Tabla 2. ModeloEnEjeq2 obtenido mediante el proceso de ajuste.

Los errores entre los datos medidos y las respuestas de los circuitos se muestran en las Tablas 3 y 4.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Zd: magnitud: 3.484 fase: 4.268 total: 7.752</td>
<td></td>
</tr>
<tr>
<td>Error sG: magnitud: 1.337 fase: 1.500 total: 2.836</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Magnitud: 2.158E-1 fase: 1.210</td>
</tr>
<tr>
<td>Zafo:</td>
<td>total: 1.425</td>
</tr>
<tr>
<td>Error</td>
<td>total: 12.01</td>
</tr>
</tbody>
</table>

Tabla 3. Error del ModeloEnEjeq3.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>magnitud: 8.149E-1 fase: 4.214 total: 5.029</td>
</tr>
<tr>
<td>Zq:</td>
<td>total: 5.029</td>
</tr>
<tr>
<td>Error</td>
<td>total: 5.029</td>
</tr>
</tbody>
</table>

Tabla 4. Error del ModeloEnEjeq2.

4. CONCLUSIONES

La implementación del SSFRT no resulta muy complicada; la principal dificultad radica en la consecución de una fuente de corriente constante con frecuencia variable en el rango especificado por[1]. La prueba permite obtener todos los parámetros de la máquina sin someterla a esfuerzos mecánicos considerables, no se requiere de máquina motriz, solamente de un sistema de gatos adecuado para fijar la máquina en las posiciones usadas para medir los datos en ejes d y q. El valor de los parámetros obtenidos depende de manera crítica del modelo escogido para el ajuste. El proceso mismo de ajuste se encuentra condicionado a un modelo específico y por lo tanto los resultados del mismo no carecen de sentido en otro contexto. El error obtenido depende del tipo de ajuste seleccionado, es diferente dependiendo de cuáles parámetros se consideran constantes y cuáles variables o son ajustables pero una selección adecuada permite obtener resultados con un error relativamente bajo lo que da una confiabilidad muy alta. El método permite obtener parámetros que no consideran el efecto de la saturación ni de la saturación cruzada debido a los pequeños valores de corriente que se manejan, sin embargo, permite obtener los parámetros completos en ejes d y q.

5. PERSPECTIVAS

La validación de los parámetros obtenidos se llevará a cabo corriendo un programa de análisis de transitorios para contrastar los resultados en variables de fase con los de otras simulaciones usando parámetros de la misma máquina obtenidos por cálculo o ensayos en el dominio del tiempo.

6. BIBLIOGRAFÍA

[9.] Jin Y. and El-Serafi A. M. A «three transfer function».

AUTORES

Nicolás Carranza Romero
Ingeniero Electricista
Ingeniero Consultor
Mira y Asociados LTDA.
nicarran@prontomail.com

Alejandro Paz Parra
Ingeniero Electricista
Segundo año de Maestría en Sistemas de Generación de Energía
Universidad del Valle Cali
Profesor Pontificia Universidad Javeriana Cali
apaz@puj.edu.co

Martha Cecilia Amaya Enciso
Ingeniero Electricista
Magister en Sistemas de Generación
Profesora Titular Universidad del Valle Cali.
Diplome d'etudes approfondi
Tercer año de Doctorado en Ingeniería.
Instituto Nacional Politécnico de Grenoble – Francia
martha.amaya@eiee.univalle.edu.co

Un hombre sin educación es como una rica y gran extensión de tierra sin cultivar.

Energía y Computación, Volumen IX, No. 2 - Segundo Semestre de 2000 - Edición No. 16