Análisis y Valoración del Índice de Calidad de Agua (ICA) de la NSF:
Caso Ríos Cali y Meléndez

Roberto Behar G.*
Maria del Carmen Zúñiga de Cardozo**
Olga Rojas Ch.*

Resumen
El índice de calidad de agua (ICA) de la National Sanitation Foundation (NSF), fue concebido con base en las características de los ríos norteamericanos. Las variables que involucra y los pesos que asigna a cada uno de los rasgos distintivos corresponde a la problemática específica de contaminación, propia de sus procesos productivos, la naturaleza de sus desechos, sus políticas públicas, sus normas y su idiosincrasia. Por estas razones tienen mucha vigencia los esfuerzos que se realicen por valorar su comportamiento y sugerir algunas modificaciones que lo adapten a nuestras condiciones específicas.

En el presente artículo, se pretende mostrar la validez de este planteamiento tomando como caso de estudio los ríos Cali y Meléndez.

Abstract
Water Quality Index of the National Science Foundation has been deduced for the special conditions of the USA's rivers, however, it has been used for many countries of the world.
Weights for variables in the Water Quality Index, was proposed in consideration of characteristics of contaminant charge, associated with particular production process. This considerations let us to think about index validity in our specific topic conditions.

In this paper we explore about this question, based in measures made in the Calli and Meléndez rivers, in Cali - Colombia.

Introducción

El índice de calidad de agua (ICA) de la National Sanitation Foundation (NSF), fue concebido con base en las características de los ríos norteamericanos. Las variables que involucra y los pesos que asigna a cada una de las características corresponden a la problemática específica de la contaminación, propia de sus procesos productivos, la naturaleza de sus desechos, sus políticas públicas, su normas y su idiosincrasia.

Por estas razones, tienen mucha vigencia los esfuerzos que se realizan por valorar su comportamiento y sugerir algunas modificaciones, que lo adapten a nuestras condiciones específicas.

En el presente artículo, se pretende mostrar la validez de este planteamiento, tomando como caso de estudio los ríos Calli y Meléndez.

El río Calli y el río Meléndez, son dos joyas del Departamento del Valle. Los habitantes de la ciudad de Cali y sus alrededores, los identifican con la ciudad, representando verdaderos símbolos cívicos.

Estas dos corrientes superficiales hacen parte de la cuenca del río Cauca al Suroccidente de Colombia y están localizados en la vertiente oriental de la Cordillera Occidental, en el departamento del Valle del Cauca, entre 3º55' y 5º01' de latitud norte y desde 75º35' y 77º35' de longitud este.

Estos ríos, en su recorrido atraviesan diferentes zonas de vida, según el sistema de caracterización climática de Holdridge, Espinal, 1992), que van desde bosque húmedo montano bajo (bhm-bm) en sus cabezales, pasando por el bosque húmedo subtropical, hasta alcanzar un bosque seco tropical (bs-t) en sus desembocaduras en el río Cauca, del cual son tributarios después de haber recibido descargas orgánicas residuales por vertimientos originados en los asentamientos humanos asociados a sus cuencas.

El equipo de investigación sobre indicadores Biológicos de Calidad de Aguas de Corrientes Superficiales, ha venido trabajando durante varios años recolectando información sobre la calidad físicoquímica y biológica de estos ríos, en distintos sitios que van desde puntos altos, cerca de su nacimiento, hasta la desembocadura en el río Cauca.

El río Calli, ha sido muestreado en siete puntos y en siete fechas distintas, y el río Meléndez en ocho puntos, durante doce fechas distintas. Todas las mediciones fueron realizadas durante los años 1992 y 1993.

Acerca del índice ICA de calidad de agua de la NSF

Como lo plantea Ott W. (1981), los intentos por lograr construir un índice que permita calificar la calidad del agua, tienen bastante historia. En Alemania en 1848, se tienen noticias de algunos intentos de relacionar la presencia de organismos biológicos específicos con la pureza del agua. En los últimos 150 años, varios países europeos han desarrollado y aplicado diferentes sistemas para clasificar la calidad de las aguas.

Estas clasificaciones siempre fueron de dos tipos: aquellas que se centran en la cantidad de contaminación presente, y aquellos que se basan en la presencia o abundancia de comunidades de organismos macro y microscópicos.

En lugar de asignar un número que representara la calidad del agua, estos sistemas de clasificación categorizaban los cuerpos de agua en una de varias clases o niveles.

En contraste, los índices que usan valores numéricos para asignar una gradación de la calidad en una escala prácticamente continua, son relativamente recientes, empezando con el índice de Horton en 1965.

La intención de Horton, era disponer de un instrumento que permitiera evaluar, de la manera más objetiva posible, la calidad de un cuerpo de agua, en distintos momentos, para valorar la efectividad de los programas de mejora y recuperación.

No obstante que el aporte de Horton constituye un avance en la objetividad, tiene la limitación de que al combinar las componentes de las distintas variables de calidad escogidas, se presenta la subjetividad en la determinación de los pesos que ponderen su importancia relativa.

En 1970, Brown, MacClelland, Dehningy y Tozer, apoyados por la National Sanitation Foundation, de los Estados Unidos de Norteamérica proponen un índice basado en la estructura del índice de Horton, conocido como Índice de Calidad de Agua de la NSF (NSFQI).

Intentando disminuir la subjetividad, este índice fue desarrollado usando un procedimiento basado en el conocido método Delphi, que consistió en combinar la opinión de un gran conjunto de expertos de todas partes de los Estados Unidos. Los miembros que fueron escogidos para conformar el panel, fueron encuestados por correo, usando varios cuestionarios, buscando en forma interactiva realizar un consenso no sólo en las variables que deberían incluirse, sino también en las transformaciones para lograr llevar cada una de las variables a subíndices en una escala similar, que permitiera resolver la dificultad que representaba la heterogeneidad de las unidades de medida. Por último y no menos importante, la ponderación de la importancia de cada subíndice.

En el aspecto físicoquímico, se tuvieron en cuenta las variables: temperatura (°C), oxígeno disuelto (mg O₂/L), BOD₅-20°C (mg O₂/L), residuo total (mg/L), turbiedad (UVT), fosfatos (mg PO₄/L), nitratos (mg N-N₂O₃/L), pH (unidad) y coliformes fecales.
Análisis y Valoración del Índice de Calidad de Agua (ICA) de la NSF: Caso Ríos Cali y Meléndez

(NMP/100 ml). Estas características son las que utiliza el Índice de calidad de agua propuesto por la Fundación Sanitaria Nacional de los Estados Unidos de Norteamérica, Ott Wayneer (1981). Cada una de estas variables tiene un peso específico de acuerdo con su importancia, relacionada con la calidad de agua.

Estos pesos que se muestran a continuación son aplicados a los subíndices correspondientes para cada una de las características mencionadas, para generar la media ponderada que constituye el índice de calidad de agua (ICA).

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>PESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>10%</td>
</tr>
<tr>
<td>Oxígeno disuelto</td>
<td>17%</td>
</tr>
<tr>
<td>DO<sub>3</sub></td>
<td>10%</td>
</tr>
<tr>
<td>Residuo total</td>
<td>8%</td>
</tr>
<tr>
<td>Turbiedad</td>
<td>8%</td>
</tr>
<tr>
<td>Fosfatos</td>
<td>10%</td>
</tr>
<tr>
<td>Nitratos</td>
<td>10%</td>
</tr>
<tr>
<td>pH</td>
<td>1.2%</td>
</tr>
<tr>
<td>Coliformes fecales</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Cuadro 1. Peso específico de las características que constituyen el índice de calidad de agua, de la NSF.

La estructura de los subíndices que se construyen, asociados con cada una de las variables seleccionadas, involucra de manera bastante plausible, las condiciones ambientales específicas, para determinar una medida de aquello que sería lo máximo assignable, considerando la factibilidad. Así por ejemplo, el nivel de Oxígeno Disuelto que requeriría una calibración del 100% (óptimo), depende, entre otras, de la temperatura del sitio y de su altura sobre el nivel del mar; por esa razón, el óptimo no puede corresponder a una cifra absoluta de concentración de Oxígeno Disuelto, sino que lo relaciona con la concentración de Oxígeno de Saturación para las condiciones ambientales del sitio de que se trate. En forma similar se definen los otros subíndices.

Si denotamos por \(i \) al subíndice correspondiente a la variable \(i \) y por \(w_i \) su ponderación respectiva, entonces el índice de Calidad de Agua que en adelante llamaremos ICA, queda expresado por:

\[ICA = \sum w_i \]

Este índice se ha generalizado en su aplicación, no obstante que fue generado con base en el ambiente específico de los ríos de los Estados Unidos, que tienen condiciones muy diferentes a los ríos de nuestro trópico y a la naturaleza de los desechos que llegan a ellos. Posteriormente en otro artículo, nos referiremos a esta temática, que ya ha sido abordada en Fojas (1991), quien propone una adaptación del índice a nuestras condiciones locales.

Resultados y discusión

A continuación se expone el reporte de los resultados de las mediciones de cada una de las variables del índice y lo correspondiente al índice de calidad ICA de la NSF.

En los gráficos que se presentan a continuación aparece en el eje horizontal la variable "Sitio" (de muestra), que asume valores del 1 hasta el 14. Para interpretar correctamente, los primeros (1 a 7) corresponden al río Cali y los siguientes (8 a 14) corresponden al río Meléndez. En cada caso estos sitios empiezan desde los de mayor altura sobre el nivel del mar (más cerca de su nacimiento) y los últimos sitios cerca de la desembocadura del río Cauca.

El cuadro N° 2, presenta los sitios de medición para el río Cali (1 a 7) y para el río Meléndez (8 a 14) con sus correspondientes alturas sobre el nivel del mar, que van desde aproximadamente los 2000 m.s.n.m. hasta los 900 m.s.n.m. (río Cali) y de 1800 a los 900 m.s.n.m. aprox. (río Meléndez).

El sitio 7 y el sitio 14, corresponden la desembocadura de los ríos Cali y Meléndez, respectivamente.

En el cuadro se presentan también la caracterización de las diferentes zonas de vida asociadas a cada uno de los sectores donde se hallan las estaciones de muestreo.

<table>
<thead>
<tr>
<th>N°</th>
<th>Sitio #</th>
<th>Nombre</th>
<th>Altura sobre el nivel del mar (m.s.n.m)</th>
<th>Zona de vida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cali</td>
<td>1</td>
<td>Peñas blancas</td>
<td>2000</td>
<td>bmh-MB</td>
</tr>
<tr>
<td>2</td>
<td>Q. Los Andes</td>
<td>1570</td>
<td>bmh-ST</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Río Pichinde</td>
<td>1620</td>
<td>bmh-ST</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Río Felicia</td>
<td>1645</td>
<td>bmh-ST</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bocotama</td>
<td>1110</td>
<td>bmh-ST</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Zoológico</td>
<td>1100</td>
<td>bs-ST</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Puente Calima</td>
<td>940</td>
<td>bs-ST</td>
<td></td>
</tr>
<tr>
<td>Meléndez</td>
<td>8</td>
<td>Villa Carmelo</td>
<td>1800</td>
<td>bmh-ST</td>
</tr>
<tr>
<td>9</td>
<td>La Candelaria</td>
<td>1600</td>
<td>bh-ST</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>El Crucillo</td>
<td>1400</td>
<td>bh-ST</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>La Fonda</td>
<td>1280</td>
<td>bh-ST</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Poilóminas</td>
<td>1100</td>
<td>bs-ST</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>La Paya</td>
<td>990</td>
<td>bs-ST</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Pte. S. Bolívar</td>
<td>990</td>
<td>bs-ST</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 2. Sitios de muestreo en los ríos Cali y Meléndez y sus características.

Cómo interpretar los gráficos

Para interpretar los gráficos que vienen a continuación, debe tenerse en cuenta que hay una "cajita" para cada sitio, la cual expresa la magnitud de la característica y su correspondiente variabilidad. Cada cajita tiene 5 puntos claves, que de abajo hacia arriba, representan el punto mínimo, aquél que supera al 25% de las observaciones (primer cuartil), el segundo cuartil representa la mediana de los datos correspondientes a ese sitio, el tercer cuartil, es el punto que supera al 75% de los datos
y luego el punto máximo. Aparecen unos puntos que se salen de la caja que corresponden a valores atípicos o muy poco habituales. De esta manera tenemos conocimiento no solo del valor medio de la variable en ese sitio, sino de la forma como varía.

En los gráficos puede compararse a primera vista, la calidad del río Cali, con la del río Meléndez, para un parámetro específico.

Oxígeno Disuelto

Veamos ahora la calidad de las aguas con respecto al Oxígeno Disuelto, uno de los parámetros más importantes, en tanto que define la presencia o ausencia de vida aeróbica en la zona de estudio.

Según Rojas (1991), se define como condición óptima de oxígeno disuelto, concentraciones por encima de 5 mg/l, que corresponden al mínimo nivel de oxígeno tolerable por la biota frágil. Concentraciones por debajo de 0,5 mg/l, no permiten la presencia de peces, siendo por tanto de calidad inapropiada.

Como puede observarse en el gráfico N° 2, los dos ríos tienen niveles aceptables de Oxígeno Disuelto en casi todo su recorrido. El río Meléndez, en el sitio más crítico, su desembocadura, posee niveles por encima de 4 mg/l. Mientras que el río Cali, alcanza niveles de cero mg/l en la desembocadura, donde el 50% del tiempo tiene una concentración de O.D por debajo de 1 mg/l, constituyéndose en verdadero punto crítico.

No obstante, el nivel aceptable de oxígeno disuelto, depende de la temperatura y de la concentración de saturación.

El modelo propuesto por la NSF, para calcular el subíndice para el OD, considera todas las condiciones y además la escala de 0 a 100% (óptimo). Vale la pena observar en el gráfico N° 3, cómo se clasificarían los ríos con respecto a este subíndice.

Demanda bioquímica de Oxígeno

En la definición del subíndice correspondiente a DBO₅, la NSF, asigna un valor de 2 en una escala de 0 a 100, cuando el agua tiene demandas de oxígeno superiores a 30 mg/l.

Gráfico 1. Oxígeno Disuelto (mg/l) para los ríos Cali y Meléndez para los diferentes sitios de muestreo.

Gráfico 2. Subíndice de calidad, con respecto al Oxígeno Disuelto (O.S.F).

Gráfico 3. Demanda bioquímica de Oxígeno para el río Cali y Meléndez para diferentes sitios de muestreo.

Gráfico 4. Subíndice de Calidad, con respecto a la DBO₅ (NSF), la escala es de 0 a 100 (óptimo).
De nuevo, casi en todo su recorrido los dos ríos tienen DSO₄ por debajo de los 10 mg/l, lo cual refleja calidad aceptable en estos sitios, con respecto a este parámetro. En la desembocadura aumenta, alcanzando valores mayores de 30 mg/l, más del 50% del tiempo en el río Cali, en tanto que en el río Meléndez, el valor homólogo es de 10 mg/l, alcanzando máximos de 30 mg/l.

Turbidez

El gráfico Nº 5, da cuenta de la turbiedad en los dos ríos y el gráfico Nº 6, nos presenta el correspondiente subíndice de la NFS, que tiene la ventaja que están estandarizados para que su escala cubra el rango de 0 a 100, y se facilite su interpretación.

Gráfico 5. Turbidez en los ríos Cali y Meléndez en los distintos sitios de muestreo.

Gráfico 6. Subíndice correspondiente a la turbidez (NFS) para los ríos Cali y Meléndez. Escala de 0 a 100 (óptimo).

En el río Cali, el subíndice de calidad por turbiedad, se mantiene por encima del 65% para todos los sitios excepto para la desembocadura, en la cual se eleva la turbidez, haciendo que el subíndice tome valores inferiores al 40%, más del 50% del tiempo.

En cuanto a turbidez, el río Meléndez, toma valores más críticos aumentando ostensiblemente también su variabilidad, a partir del sitio Nº 11 (“La Fonda”). En la desembocadura el subíndice, toma valores por debajo de 20, el 25% del tiempo. La mitad del tiempo asume valores del subíndice de calidad inferiores al 50%.

Residuo total

Los gráficos 7 y 8, muestran la concentración de los residuos totales y su subíndice de calidad asociado, en los dos ríos.

Gráfico 7. Residuo Total, en los ríos Cali y Meléndez en los distintos sitios de muestreo.

Gráfico 8. Subíndice de calidad, con respecto al Residuo Total, en los ríos Cali y Meléndez en los distintos sitios de muestreo. La escala es de 0 a 100.

El comportamiento del residuo total, en los dos ríos es muy similar. Para el río Cali, se aprecia que en todos los puntos tienen niveles de concentración de residuo total, que producen subíndices que indican niveles de calidad bastante aceptables, salvo en su desembocadura, en la cual se disparan los residuos totales, alcanzando valores mayores que 300 mg/l el 50% del

Ingeniería y Competitividad
tiempo, generando con esta misma frecuencia subíndices de calidad por debajo de 60%. De igual forma, el río Meléndez presenta mayor variabilidad en los residuos totales, en los sitios de muestreo próximos a su desembocadura y mayores valores para su mediana.

Para juzgar apropiadamente la calidad en cuanto a RT, debe tenerse en cuenta que la NSF asigna un valor de 20% al subíndice, cuando la concentración de RT supera los 500 mg/l, lo cual ocurre muy raramente en los dos ríos.

pH

Los ríos Cali y Meléndez, satisfacen en muy buena forma la calidad, en cuanto a pH se refiere, pues su rango, todo el tiempo se encuentra entre 6.5 y 8.5.

Nitratos

Para Nitratos el subíndice de la NSF, asigna un valor de 1%, cuando la concentración supera los 100 mg/l.

![Gráfico 11. Distribución del parámetro Nitratos, en los distintos sitios de muestreo de los ríos Cali y Meléndez.](image)

Gráfico 11. Distribución del parámetro Nitratos, en los distintos sitios de muestreo de los ríos Cali y Meléndez.

De los gráficos 11 y 12, es fácil concluir que en este sentido tenemos una excelente calidad de agua en ambos ríos.

Como puede colegirse, de las concentraciones tan bajas, y de valores del subíndice próximos al 100% en todo el recorrido, este parámetro no es un discriminador de la calidad de agua de estos dos ríos y por lo tanto en la adaptación que se haga del índice de la NSF, la variable Concentración de Nitratos, no debería incluirse, en la evaluación.

Fosfatos

La NSF, asigna al subíndice asociado a los Fosfatos un valor de 2%, cuando la concentración supera los 10 mg/l.

![Gráfico 12. Subíndice de la NSF, para Nitratos, en los distintos sitios de muestreo de los ríos Cali y Meléndez.](image)

Gráfico 12. Subíndice de la NSF, para Nitratos, en los distintos sitios de muestreo de los ríos Cali y Meléndez.
En ambos ríos, la máxima concentración de fosfatos, escasa-mente supera los 2 mg/l. En todos los sitios muestreados, excepto en la desembocadura, los valores no llegan a los 0.5 mg/l. Esto se refleja en el gráfico del subíndice que muestra por este concepto calidad óptima en estos sitios.

En la desembocadura la concentración de fosfatos aumenta a 2 mg/l en el río Cali y hasta 1.5 mg/l en el río Meléndez, pero aún así los valores del subíndice permanecen por encima del 60% el 75% de las veces en el río Meléndez, mientras que para el río Cali, el homólogo es 35% (Ver gráficos 13 y 14).

Posteriormente, veremos la asociación directa entre altura sobre el nivel del mar y la temperatura del agua.

Si detallamos el gráfico 16, sobre el subíndice de calidad NSF, por temperatura, notamos que en este aspecto la calidad es óptima en todo el trayecto de ambos ríos, lo cual significa que la temperatura no es un factor que discrimine la calidad de las aguas de estos dos ríos, razón por la cual podría excluirse del índice de calidad, para el caso específico de estos dos ríos.

Temperatura

En el gráfico se aprecia un incremento de la temperatura a medida que nos acercamos a la desembocadura, sin embargo, este cambio de temperatura es debido a la altura sobre el nivel del mar y no a impactos de descargas, como muy bien lo registra el subíndice NSF en el gráfico 16. La estructura del subíndice, involucra los cambios de temperatura con respecto a la temperatura de equilibrio que se determina ajustando por la altura sobre el nivel del mar y la temperatura ambiente.

Las temperaturas varían desde 12-14°C en la parte más alta del río, hasta 26°C en la desembocadura.

En realidad, en el recorrido de los ríos Cali y Meléndez no existen descargas que afecten de manera importante la temperatura del agua.

Asociación entre Altura sobre el Nivel del Mar y la Temperatura

Un elemento que refuerza la condición natural, no alterada, de la temperatura del agua, es la fuerza de la asociación con la Altura sobre el nivel del mar, como se muestra en el gráfico 17.
El coeficiente de correlación lineal es de 0.85, el cual es bastante alto, sobre todo, si se tiene en cuenta que existen otros factores como las brisas y vientos que también afectan la temperatura.

Gráfico 17. Asociación entre la temperatura del agua y la altura sobre el nivel del mar

Coliformes fecales

La función subíndice para coliformes fecales en el índice de calidad de agua de la NSF, asigna un valor del 2%, cuando la concentración de coliformes (NMP/100 ml) supera los 100,000.

Gráfico 18. Coliformes fecales en los distintos sitios de muestreo de los ríos Cali y Meléndez

Rojas (1991), considera que niveles de NMP entre 24 y 2400, definen un agua de buena calidad, puesto que 2400 NMP, es la concentración máxima de coliformes recomendada para aguas de captación para abasto público.

Gráfico 19. Subíndice NSF, para coliformes fecales en los distintos sitios de muestreo de los ríos Cali y Meléndez

Los gráficos 18 y 19 muestran los niveles de coliformes y los valores del subíndice respectivamente para los distintos sitios, sin embargo, dado el rango tan amplio de los valores que asume el NMP, que va desde las decenas hasta los miles de millones, da la errónea apariencia de que en algunos sitios el NMP es muy bajo, cuando en realidad no lo es, como se aclarará más adelante. Sin embargo, dado que el subíndice respectivo de la NSF, varía en la escala de 0 a 100, en el gráfico 20 puede hacerse una mejor idea de la situación.

Con relación a este índice, de inmediato se aprecia que la situación es crítica en la desembocadura de ambos ríos (sitios 7 y 14). Del gráfico del subíndice de coliformes de la NSF, se aprecia claramente, como el agua se va deteriorando a medida que se acerca a la desembocadura, lo cual es explicable, puesto que en ese mismo sentido va aumentando la cantidad de descargas que el río va recibiendo.

Se observa que el más alto valor de la mediana del subíndice, se alcanza en el sitio 7, valor que sólo alcanza el 40%.

Índice aditivo “ICA” de calidad (WQI-NSF)

Ahora se calculará para cada una de las observaciones el índice de la National Sanitation Foundation, que se describió en la introducción y que resume todos los subíndices de las características que se han descrito, en uno solo, haciendo la suma ponderada por la importancia que a juicio de los expertos, tiene la característica como contaminante.

Brown R. et al (1970), propone la siguiente clasificación para la calidad del agua, de acuerdo con los valores que adopta el índice ICA de la NSF, tomando en cuenta las características que debe presentar un agua para ser considerada como fuente de captación para consumo humano.
Cuadro 3. Clasificación de la calidad de agua de acuerdo con el índice ICA de la NSF.

<table>
<thead>
<tr>
<th>Índice de calidad</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-100</td>
<td>EXCELENTE</td>
</tr>
<tr>
<td>71-90</td>
<td>BUENA</td>
</tr>
<tr>
<td>51-70</td>
<td>MEDIATA</td>
</tr>
<tr>
<td>26-50</td>
<td>MALA</td>
</tr>
<tr>
<td>0-25</td>
<td>MUY MALA</td>
</tr>
</tbody>
</table>

El gráfico 20, muestra la distribución de los valores que toma el índice aditivo de calidad ICA en los distintos sitios de muestreo, para los ríos Cali y Meléndez. En él, aparecen marcadas las líneas que categorizan la calidad del agua, de acuerdo con los valores que asume el índice ICA de calidad del agua, según el cuadro N° 3.

Del gráfico 20, puede apreciarse que ninguna de las estaciones de los ríos Cali y Meléndez tiene agua de calidad "exceLENTE". Para el río Cali, en todos los sitios de muestreo el agua es calidad "buena", excepto en la desembocadura en "Puente Calima", la cual queda catalogada como de "mala" calidad.

Para el río Meléndez, el río en todo el tramo, desde "Villa Carmelo" (sitio 8) hasta "Polvorrines" (sitio 12), el agua queda catalogada como "buena", con el criterio definido en el cuadro 3, sin embargo, el restante tramo hasta la desembocadura en el "Puente Simón Bolívar", tiene asociada una clasificación de "regular" calidad. Con respecto al índice ICA aditivo, ningún tramo del río Meléndez queda clasificado como agua de "mala" calidad.

Índice de calidad multiplicative de la NSF

Cuando algunos de los subíndices toman valores extremos, la NSF, sugiere la aplicación de un Índice Multiplicativo el cual es menos sensible a valores extremos. Este índice se calcula multiplicando los subíndices, colocando las ponderaciones como exponentes en cada uno de ellos, dando origen a la fórmula:

$$ ICM = \prod_{i=1}^{n} W_i $$

Gráfico 21. Ríos Cali y Meléndez. Índice (Multiplicativo) de calidad (ICF) para los distintos sitios de muestreo.

En el gráfico 21, se presenta la distribución de frecuencias de los valores que asume el Índice de calidad multiplicative, para todos los sitios de muestreo en los ríos Cali y Meléndez. Aparecen marcadas en el gráfico las líneas que definen las categorías de calidad.

En general, los valores que asume el índice multiplicative de calidad, para los ríos Cali y Meléndez, son más bajos que los correspondientes al índice aditivo.

De acuerdo con el ICA multiplicativo, sólo se clasifica como de "buena" calidad el agua del río Cali, en el sitio "Paazas Blancas" (sitio 1). El tramo siguiente hasta la "Bocatoma" (sitio 3), que con el ICA aditivo, eran catalogadas como aguas de "buena" calidad, ahora con el ICA multiplicativo, son clasificadas como de "regular" calidad, mientras que el tramo final hasta la desembocadura, es considerado como de "mala" calidad (sitios 6 y 7).

En cuanto al río Meléndez, ningún tramo de su recorrido es ahora clasificado como de "buena" calidad. El tramo que abarca desde "Villa Carmelo" (sitio 8) hasta "La Fonda" (sitio 11) que con el índice aditivo fueron clasificados como agua de "buena" calidad, ahora, con el ICA multiplicativo, se consideran de "regular" calidad y el siguiente tramo hasta la desembocadura, es decir, desde "Polvorrines" (sitio 12) hasta el "Puente Simón Bolívar" (sitio 14), son considerados como de "mala" calidad.

Características involucradas en el índice ICA

La importancia relativa de cada uno de las variables, que se
La ICA de la NSF, pueden sufrir variaciones de acuerdo con los contextos locales en los cuales se aplique. En la práctica pueden darse situaciones particulares en las que, por ejemplo, los nitratos no constituyan un problema, por su permanencia bajo concentraciones particulares. Por lo tanto, en situaciones locales, pueden existir asociaciones entre los valores y algunos de las variables, que hacen que el conocimiento de las concentraciones de una de ellas, pueda predecirse bastante bien, las concentraciones de la otra.

Tomar en cuenta estas consideraciones en la práctica, para una situación particular, equivaldría a reproducir el índice ICA de la NSF, usando menos variables, realizando menos mediciones y bajando costos.

No se trata de construir un índice conceptualmente distinto al ICA de la NSF, se trata de reproducirlo, con menos información.

A continuación exploraremos esta opción para la situación específica de los ríos Cali y Meiléndez. La estrategia metodológica consiste en ajustar un modelo de regresión, que permita hacer buenas predicciones del índice ICA, con el menor número de variables.

Es importante aclarar que las asociaciones que se detectan al ajustar modelos matemáticos, no son necesariamente relaciones de causalidad, son asociaciones estadísticas. Significa que se detecta una tendencia de una de las variables a crecer (o a decrecer) cuando la otra crece. La razón de esta asociación estadística, puede expresarse por una tercera variable o condición tácita, que intervenga en el fenómeno. Así por ejemplo, para el caso del río Cali, basta observar la matriz de correlaciones de algunas de las variables, para detectar asociaciones estadísticas (véase cuadro 4).

De la matriz del cuadro 4, pueden apreciarse algunas asociaciones estadísticas, que no necesariamente tiene explicación en la físicoquímica del agua. Por ejemplo, el subíndice de oxígeno disuelto está correlacionado con el subíndice de residuos totales ($r=0.84$). El subíndice de fosfatos y el de residuos totales ($r=0.86$). El subíndice de oxígeno disuelto y el de DBO$_5$ ($r=0.87$).

Una explicación posible para las asociaciones espurias consiste en que las mediciones, en los distintos puntos de muestreo, producen dicha asociación; es decir, que en un sitio donde se realiza una alta descarga de DBO$_5$, también, por razón de la misma, se altera la turbiedad, los residuos totales, fosfatos, etc. Análogamente, en los sitios en los que no se producen mucha descarga de DBO$_5$, tampoco hay de sustancias que consuman el oxígeno del agua, ni que generen turbiedad, etc.

No obstante, estas condiciones existen en la realidad y si se mantienen en forma permanente puede ser usadas para lograr ganancias en la construcción del índice ICA de calidad de agua.

En el contexto que se ha discutido y en este caso para el río Cali específicamente, deben interpretarse los modelos que se construyan con el propósito que se ha mencionado.

Modelo para predecir el ICA: Río Cali

Para el río Cali, el coeficiente de correlación lineal entre el subíndice del oxígeno disuelto y el índice ICA de calidad de agua es de 0.93 y el modelo de regresión lineal que los relaciona es:

$$\text{ICA} = 35.575 + 0.442 \times \text{INDICE DE O.D.}$$

Este resultado es verdaderamente sorprendente, pues no obstante que el ICA fue construido con la combinación lineal de 9 variables, tan sólo con una de ellas, el oxígeno disuelto, se logra explicar más del 80% de la varianza del ICA.

Si se hiciera este ejercicio usando el subíndice de la Demanda Bioquímica de Oxígeno, se obtendría que el coeficiente de correlación lineal con el ICA es de aproximadamente $r=0.90$ y el modelo resultante es:

$$\text{ICA} = 38.159 + 0.418 \times \text{INDICE(DBO$_5$)}$$

Significa que el subíndice del DBO$_5$, por sí solo, explica aproximadamente el 80% de la varianza del ICA.

Haciéndose un poco más complejo el modelo, podríamos incluir los dos subíndices al tiempo en un modelo de regresión lineal, lo cual da origen a:

$$\text{ICA} = 52.1 + 0.288 \times \text{INDICE(O.D.)} + 0.19 \times \text{INDICE(DBO$_5$)}$$

Si realizan predicciones del ICA con este modelo y se calcula la correlación de estos valores predicidos con los valores reales...
daderos del ICA, calculados con las 9 variables fisicoquímicas, se obtiene un coeficiente de correlación lineal $r=0.96$, lo cual significa que con sólo estas dos variables, se explica un poco más del 90% de la variación total del índice de calidad ICA de la NSF, para el río Cali.

Si complejizamos el modelo introduciendo el subíndice de coliformes, además de las dos variables anteriores, se obtiene:

$$ICA = 32.9 + 0.254 \times \text{Índice (OD)} + 0.143 \times \text{Índice (DBO$_{5}$)} + 0.214 \times \text{Índice (COLP)}$$

Este modelo que considera sólo 3 variables de las 9 definidas para el índice de calidad de agua de la NSF, realiza predicciones para el ICA del río Cali, con tal precisión, que el coeficiente de correlación lineal entre los valores predichos y los verdaderos es $r=0.985$, lo cual significa que este modelo explica aproximadamente el 97% de la variación total del Índice ICA de calidad de agua.

Este significa que en el contexto de las condiciones del río Cali, con sólo disponer de los subíndices para el oxígeno disuelto, para la DBO$_{5}$ y para coliformes fecales, usando el modelo presentado, se puede obtener una muy buena aproximación del ICA que resultaría de usar las 9 variables.

En el gráfico 22, se aprecia la excelente asociación entre los valores del ICA obtenidos usando el modelo de las tres (3) variables y los verdaderos valores del Índice de calidad de agua ICA de la NSF.

La predicción perfecta implicaría que todos los puntos cayeran sobre la recta que se ha dibujado en el gráfico.

Gráfico 22. Valores del ICA obtenidos con el modelo contra los verdaderos valores del ICA aditivo de la NSF.

Conclusiones

La clasificación de las aguas de los ríos Cali y Meléndez realizada con base en los criterios de Brown et al (1970), y con base en el índice multiplicativo de calidad de la NSF, se ajusta más a la percepción del río que tienen los autores del presente artículo.

Para el río Cali, con prioridad, es necesario intervenir, con las acciones pertinentes, el tramo comprendido entre la bocaoma, específicamente desde el zoológico y la desembocadura, el cual resultó catalogado como de aguas de “mala” calidad. En forma análoga, en el río Meléndez, el tramo que va desde “Povorones” hasta el “Puente Simón Bolívar”.

En cuanto a la estructura de los índices, en situaciones donde hay gran variabilidad en los niveles de los subíndices de las variables, en especial cuando alguno de ellos toma valores excesivamente bajos, el índice multiplicativo, arroja resultados más acordes con la realidad.

Es muy importante disponer de información histórica y sistemática sobre la calidad del agua, con el propósito de definir acciones para mejorar la calidad de las aguas y para evaluar el impacto de las intervenciones del hombre en pro o en contra de los ríos.

Con la construcción de un modelo estadístico para explicar la variación del índice aditivo de calidad de la NSF, para el río Cali, se presenta una metodología para discriminar las variables esenciales que afectan el índice ICA y la forma particular como se relacionan dichas variables con él.

Para el caso específico del río Cali, el modelo obtenido funciona bastante bien. Es interesante hacer un seguimiento prospectivo, para continuar comparando las predicciones del modelo, con lo observado en la realidad, con el propósito de validar el modelo obtenido.

Para todo modelo que se construya es necesario alimentar periódicamente nuevos datos, con el fin de actualizar el cálculo de sus parámetros.

Otra investigación que es necesario hacer es sobre efectividad del índice. En cierta forma un índice es un esfuerzo por “reemplazar” la información que nos proporcionan nueve (9) variables por una sola, el índice ICA.

La pregunta que arremita una investigación es: en este “reemplazo” ¿cuánto se pierde? ¿Podría pensarse en dos (2) índices de calidad, como una pareja, en lugar de uno solo?

Vale la pena enfocar esfuerzos para dar respuestas objetivas a estos interrogantes.

Bibliografía