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Abstract
Let M C S™ be a minimal hypersurface, and let us denote by A the shape operator of M.
In this paper we give an alternative proof of the theorem that states that if |A|> =n — 1,
then M is a Clifford minimal hypersurface.
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1 Introduction and preliminaries

Let M be a minimal hypersurface of S” C R""!. For every z € M we will
denote by T, M the tangent space of M at x and by A, : T, M — T, M the
shape operator. Notice that if v : M — R™! is a normal unit vector field
along M, i.e., for every x € M, v(z) is perpendicular to the vector z and to
the vector space T, M, then A, (v) = —dv,(v) = —F'(0) where 3(t) = v(a(t))
and «(t) is any smooth curve in M such that a(0) = z and o/(0) = v. It can
be shown that the linear map A, : T,M — T,M is symmetric, therefore it
has n — 1 real eigenvalues k1(x),...,kn—1(z). These eigenvalues are known
as the principal curvatures of M at z. The mean curvature H(z) of M at z is
the average of the principal curvatures. M is said to be minimal if H(z) =0
for every x € M. The norm of the shape operator is defined by the equation
JAI? = K]+ + Ky

1.1 Examples: The equators and the Clifford hypersurfaces:

Let v € R be a unit fixed vector. Let us define
S" Yw) = {x € 8" : (x,v) = 0}.

Clearly, S" 1(v) is a hypersurface of S™. In this case the map v: S" ! (v) —
R™*+! given by v(p) = v is a normal unit vector field along S"~!(v). Therefore
A, : T,M — T,M is the zero linear map, and x1(p) = -+ = kp—1(p) = 0 for
all p € M and M is minimal. These examples are called equators. It is not
difficult to show that the equators are the only minimal hypersurfaces with
|A||? : M — R identically zero.

Given any integer k € {1,...,n — 2}, let us define = (n — 1) — k and

k l
My, = {(:z,y) e RFFL x RIFL - |z = —— and lyl|? = m}
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It is not difficult to see that for any (z,y) € M
Ty My = {(v,w) e RM X RFL: (z,0) =0 and  (w,y) = 0}.

Therefore the map v : My — R™*! given by

= ()

is a normal unit vector field along M. Notice that the vectors in T, )My,
of the form (v, 0) define a k dimensional space. A direct computation, using
the expression for v, gives us that if (v,0) € T{, )My, then, A¢ (v,0) =

—\/% (v,0). Therefore —\/% is an eigenvalue of A, ) with multiplicity k. In

the same way we can show that \/? is an eigenvalue of A, . with multiplicity

[. Now, we have that the mean curvature H(x,y) = k <—\/%> +1 < %) =0.
We also have that

2 2
I 2
|A@yl* =& <—\/;> y <\/;> —l+k=n—1

Definition 1. We will say that M C S™ is a minimal Clifford hypersurface,
if, up to a rigid motion, M 1is equal to My, for some k and I, i.e., M 1is
Clifford if M = A(My;) for some orthogonal matriz A € O(n+ 1).

1.2 The fundamental equation for the shape operator

Let us denote by C°°(T'M) the vector space of differentiable tangent vector
fields on M. The covariant derivative of A is the tensor DA : C*®(TM) x
C®(TM) — C®(TM) given by DA(V,W) = Dy A(W) — A(DyW) where D
is the Levi Civita connection on M. The second covariant derivative of A is
the tensor D?A : C°(TM) x C®°(TM) x C®(TM) — C>°(TM) given by

D*(X,Y,Z) = Dz(DA(X,Y)) — DA(DzX,Y) — DA(X, DY)

The Laplacian of A at p € M is the linear map AA, : T,M — T,M given by
AA,(v) = " D?Ay(v, €4, ¢;) where {e1,...,en_1} is an orthonormal basis
of T,M.

In [4] Simons proved that if M C S™ is a minimal hypersurface, then

AA=(n—1)A— |A]PA.
As a consequence of this formula we have that
AJAPP =2 ((AA, A) + |DAPP) =2 (JA]? ((n — 1) — |A]?) + |[DAJ?) ,

and therefore we obtain,
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Lemma 2. Let M be a minimal hypersurface in S™ that is not an equator.
We have that, |A|?> =n — 1 if and only if DA = 0.

In 1970, Lawson in [2] and independently Chern, Do Carmo and Kobayashi
in [1] proved the following theorem:

Theorem 3. Let M be a minimal hypersurface of S™. If for every x € M,
|A||?(x) = n—1, then M must be a subset of a Clifford minimal hypersurface.

The theorem we have just mentioned, is one of the results most frequently
used results when a characterization of the Clifford hypersurfaces is needed.
The reason is that the condition on the norm of the shape operator is a lot
easier to verify and more likely to show up in a computation than any other
property that may characterize the Clifford minimal hypersurfaces.

In this communication, we will give an alternative proof of this theorem.
As one of the main differences with the previous proofs, [2] and [1], our
proof does not use integration of distributions i.e. it does not use Frobenius’
Theorem. The idea of this new proof relies on the following lemma, whose
proof is a straightforward computation. See [3] for details.

Lemma 4. If B is a fized invertible (n+ 1) x (n+ 1) symmetric matriz and
M = {z € S": (Bx,x) =0} is a minimal hypersurface of S™, then M 1is a
Clifford minimal hypersurface.

2 Main result

In this section we give an alternative proof of Theorem 3. We will prove
the theorem by showing that if M is a minimal hypersurface in S™ with
|A||? = (n—1), then, there exists a constant invertible symmetric matrix By,
such that M C {z € S : (z, Bypz) = 0}. The following lemma was proven in
[2] and [1].

Lemma 5. Let M C S™ be a minimal hypersurface which is not and equator.
If the covariant derivative of A is identically zero, i.e. if DA(V,W) = 0
for all VW € C*°(TM), then, at every point p € M, there are exactly
two principal curvatures k1 and ko. Moreover, these principal curvatures are
constant functions, they do not depend on the point p, and k1Ko = —1.

Proof. For any pg € M, Since |A|?(po) # 0 and M is minimal, then r;(pg) #
kj(po) for some ¢ and j. Let V,W be tangent vector fields defined in a
neighborhood of py such that |V(p)| = [W(p)| = 1, A,(V(p)) = iV (p)
and A,(W(p)) = ;W (p), and DyW (py) = DwV(pp) = 0. Since DA is
identically zero, we have that Dz A(U) = A(DzU). Therefore, if K(py) is the
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sectional curvature of M in the plane spanned by V(pg), W(po), then

#;(po) K (po) = (DwDvV — Dy Dy V, A(W))(po)
= (DwDvA(V) — Dy DwA(V), W)(po)
= —(DwDyW — Dy DwW, A(V))(po)
= ki(po) K (po)-

Notice that in the second step we used the symmetry of the shape operator
and the fact that DA vanishes. In the third step we used the symmetries of
the curvature tensor. Since x; # r; then K = 0. By Gauss equation we get
that 0 = 1+ ki(po)~;(po). The lemma follows from this last equation. O

Lemma 6. Let M C S™ be a hypersurface, v : M — R"" a normal unit
vector field along M, and w € R"*! a fived vector. Let us define 1, : M — R,
fo: M — R and w?’ : M — R" by 1,(2) = (z,w) and fu(x) = (v(z),w)
and wl () = w — (z,w)z — (v(z),w)v(z). Ifzr € M and v € T, M, then

o(l) = (w,0) = (W7 (2),0)  (fu) = —(A@T(2)),0) and
Dva(x) = —ly(@)v + fu(2)Asz(v).

Proof. Notice that w’ (z) is the orthogonal projection of the vector w on T, M
and therefore it defines a tangent vector field on M. Let o : (—e,e) — M be
a curve such that a(0) =z and /(0) = v. we have that

_ di (alt))
dt

_ d{a(t)w)

l
(L) — dt

Likewise,

_ du(a(t)w)

dv(a(t
= dt = < gt( 2 w>
t=0 t=0 t=0

= (dvz(v),w) = —(Az(v), w) = —(A; (v), w" (2)) = —(A (0" (x)) ,v).
dw’ (a(t))

We also have that
T

Dyw” (z) =
oo = ()

_ <d (w = Ly (a(t) a(t) = fu (a(t)) v (a(t))))T

o(fu) = dfwg?(t))

dt
= —ly(@)v — fu(x)dv,(v) = —ly(x)v + fu(x) Az (V).

This last equation proves the lemma. 0O
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We are now ready to prove Theorem 3.

Proof. (Theorem 3) By lemmas 2 and 5 we have that DA = 0 and M
has exactly two principal curvatures k1 and ko in every point of M with
Kike = —1. For any z € M let us consider the linear transformation
T : R* — R given by T'(v) = A(v) for any v € T,M, T(z) = —v(z)
and T (v(x)) = —x + (k1 + k2)v(x). Notice that for every x € M, we have
decompose R"*! as the direct sum of the three subspaces T, M, {tx : t € R}
and {tv(z) : t € R}, then, we have established how 7" acts on each subspace;
therefore, the transformation 7' is uniquely defined. Let S(n+1) be the space
of symmetric (n+ 1) x (n+ 1) matrices. For any x in M, let B(z) € S(n+1)
be the matrix such that B(z)w = T(w) for any w € R"*!. Notice that if
er = (1,0,...,0)...en41 = (0,...,0,1) is the canonical basis of R"*!, then
B(x) = {b;;} where

b'ij = <T(ei),ej> = <T (€,LT + €XT;T + I/Z‘I/) ,€j>
= (A(el),ej) —zivj +vi(—zj + (k1 + K2)vj).

Here z; : M — R and v; : M — R are the functions given by z;(x) = (z,e;)
and v;(x) = (v(x),e;), and el is the orthogonal projection of e; on T, M.
Notice that the functions z; and v; are the functions l., and f., defined in the
lemma 6.

We have that B : M — S(n + 1) defines a smooth map on M. We will
prove that this map is constant by showing that if v € T,; M, then v(b;;) = 0.
We can assume without loss of generality that A(v) = kv or A(v) = kav. Let
us work the first case, A(v) = k1v. We will use the Lemma 6 in the following
computations.

v(A(ef) e5) =v(A(e]) . e])
= (A(Due]) e )+ (A(e]) , Duej)
= (A(—zv + v;A(v)), e5) + <A (eiT) ,—T0 + I/jA(U)>
= (A(—zv + 1;A(v)), e5) + <ez~, —xjA(v) + VjA2(v)>

= —r1z; (v, e5) + vkt (v, ej) — k1w (v, e;) + VKT (v, e;) .

The second equality in the previous computation follows from the fact
that DA = 0.

v(zivy) = v(x)v; + zo(v;))
= <€Z‘, ’U>Uj — Xy <A(U), €j>
<€i7 ’U>Uj — TiR1 <Uv ej>‘
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(51 -+ m2olivg) = (1 + m2) (@(3)vs + vin(;)
= —(k1+ "52)(<€Z= )i+ VZ<A(U)7€J'>)
= —(k1+ H2)H1(<€u > i+ (v, e5)vi)
= —ri({es, 0)vj + (v, e)v5) + ((&:,0)vj + (v, €j)v;).

In the last equality we used the fact that k1ko = —1. Combining these
equations we get that v(b;;) = 0. A similar argument shows that v(b;;) = 0
when A(v) = kgv. Therefore B(z) = By for all x € M and M C My =
{:1: eSs": <Box,a:> = 0}. Since By is an invertible matrix, we have that M
is a hypersurface. Since M is minimal then Mj is also minimal. By lemma 4
My is a Clifford minimal hypersurface. This completes the proof. O

Remark: The proof we gave of Theorem 3 actually shows that if M is a
hypersurface of S (not necessarily minimal) and DA = 0, then, either M is
umbilical or M C f~!(0) where f : R""! — R is an homogeneous polynomial
of degree 2. This is one of the advantages of the new proof in contrast with
the old one.
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