Sturm-Liouville boundary conditions for a second order ODE

Pablo Amster Pedro P. Cárdenas
Received Sept. 28, 2006 Accepted Feb. 2, 2007

Abstract
We study the semilinear second order ODE \(u'' + g(t, u) = 0 \) under the following Sturm-Liouville boundary condition \(au(0) + bu'(0) = u_0 \) and \(cu(T) + du'(T) = u_T \). We obtain solutions by topological methods. Moreover, we show that a solution may be constructed recursively, under appropriate conditions.

Keywords: Sturm-Liouville boundary conditions - Topological methods
MSC(2000): 34B15

1 Introduction
We study the semilinear second order problem

\[
\begin{align*}
 u'' + g(t, u) &= 0 \\
 au(0) + bu'(0) &= u_0 \\
 cu(T) + du'(T) &= u_T
\end{align*}
\]

with \(g : [0, T] \times \mathbb{R} \to \mathbb{R} \) continuous, and \(ad - bc \neq 0 \). Problems of this kind have been considered since the fifties by, among others, Ehrmann [4] and Struwe [7] using shooting arguments, and by Bahri-Berestycki [1], Rabinowitz [6], using critical point theory. In the nineties, Capietto, Henrard, Mawhin and Zanolin [2], [3] applied the Leray-Schauder continuation method for a nonlinearity of the type \(g = g_1(u) + p(t, u, u') \), where \(g_1 \) is superlinear and \(p \) satisfies a linear growth condition.

Throughout the paper, we shall assume that all the eigenvalues \(\{\lambda_n\}_{n \in \mathbb{N}} \) of the problem

\[
 -u'' = \lambda u, \quad au(0) + bu'(0) = cu(T) + du'(T) = 0
\]

are non-negative. Writing \(u = \gamma e^{rt} + \delta e^{-rt} \) as a possible eigenfunction (corresponding to an eigenvalue \(\lambda = -r^2 \)), it is easy to verify that the previous non-negativity assumption is equivalent to the following condition:

\[
 (a + br)(c - dr) \neq (a - br)(c + dr)e^{2rT} \quad \text{for } r > 0.
\]

If furthermore \(ad - bc + acT \neq 0 \), then \(\lambda_1 > 0 \), and the problem is called non-resonant. On the other hand, if \(ad - bc + acT = 0 \), then \(\lambda_1 = 0 \). This
situation corresponds to the resonant case, for which a simple computation shows that the corresponding (normalized) eigenfunction φ_1 is given by

$$\varphi_1(t) = \left(\frac{a^2T^3}{3} - abT^2 + b^2T \right)^{-1/2} (b - at). \quad (3)$$

We shall prove the existence of solutions of (1) by topological methods. More precisely, for the non-resonant case we obtain in section 2.1 an existence result under a linear growth condition on g using Schauder’s fixed point theorem. On the other hand, we shall prove the existence of at least one solution when g is sub quadratic and satisfies the one-sided growth condition

$$\frac{g(t, u) - g(t, v)}{u - v} \leq \gamma < \lambda_1. \quad (4)$$

We recall that the first eigenvalue can be computed by the Rayleigh quotient:

$$\lambda_1 = \inf_{u \in E} \frac{-\int_0^T u''(t)u(t)dt}{\int_0^T u^2(t)dt} \quad (5)$$

with $E = \{ u \in H^2(0, T) : au(0) + bu'(0) = cu(T) + du'(T) = 0 \}$.

In section 2.2 we shall embed problem (1) in a family $(1)_\sigma$ of problems with a parameter $\sigma \in [0, 1]$. Thus, starting at a solution u_σ for some $\sigma < 1$ we shall define recursively a sequence which converges to a solution of $(1)_{\sigma + \varepsilon}$ for some appropriate step ε. In particular, when ε does not depend on u_σ, we obtain recursively solutions for $0 = \sigma_0 < \sigma_1 < \ldots < \sigma_N = 1$, which gives a solution of the original problem. Finally, in section 3 we obtain solutions for the resonant case under the so-called Landesman-Lazer type conditions.

Remark 1.1. For simplicity, we consider only the case $g = g(t, u)$, although the methods presented in this paper can be extended to the non-variational case $g = g(t, u, u')$.

2 The non-resonant case

In this section we study the non-resonant case, in which condition

$$ad - bc + acT \neq 0 \quad (6)$$

holds. In section 2.1 we establish two existence results by topological methods, and in section 2.2 we define an iterative scheme that converges to a solution of (1).
2.1 Solutions by fixed point methods

We shall define a fixed point operator in order to obtain solutions of (1) by topological methods, under the assumption $ad - bc + acT \neq 0$. In this case, for any $\theta \in L^2(0, T)$ there exists a unique solution of the problem

$$u'' = \theta, \quad au(0) + bu'(0) = cu(T) + du'(T) = 0$$

given by the integral formula

$$u(t) = \int_0^T G(t, s)\theta(s)ds,$$

where G is the following Green function:

$$G(t, s) = \frac{(b - at)(c(T - s) + d)}{ad - bc + acT} + \max\{t - s, 0\}.$$

Thus, the solutions of (1) can be regarded as fixed points of the operator T given by

$$Tu(t) = \alpha t + \beta - \int_0^T G(t, s)g(s, u(s))ds,$$

where

$$\alpha = \frac{au_T - cu_0}{ad - bc + acT}, \quad \beta = \frac{(cT + d)u_0 - bu_T}{ad - bc + acT}.$$

Thus we obtain:

Theorem 2.1. Let (2) and (6) hold, and assume that $|g(t, u)| \leq k|u| + l$, with $k < \lambda_1$. Then problem (1) admits at least one solution.

Proof. From the assumption on g, it follows that $T : L^2(0, T) \to L^2(0, T)$ is well defined. Furthermore, by Arzelá-Ascoli’s Theorem we deduce that T is compact. Moreover, from the Rayleigh quotient (5) we get, for fixed \tilde{u}:

$$\|Tu - T\tilde{u}\|_{L^2} \leq \frac{1}{\lambda_1}\|(Tu - T\tilde{u})''\|_{L^2} = \frac{1}{\lambda_1}\|g(\cdot, u) - g(\cdot, \tilde{u})\|_{L^2} \leq \frac{k}{\lambda_1}\|u\|_{L^2} + s$$

for some constant $s \geq 0$. Thus, for R large enough we conclude that $T(B_R(0)) \subset B_R(0)$, and the proof follows from Schauder’s Fixed Point theorem.

Theorem 2.2. Let (2) and (6) hold. Further, assume that g satisfies (4), and that $|g(t, u)| \leq k|u|^r + l$ for some constants k, l and some $r < 2$. Then problem (1) admits a unique solution.
Proof. From the assumptions, if \(u \in L^2(0,T) \) then \(g(\cdot, u) \in L^p(0,T) \) for some \(p > 1 \), and the operator \(T : L^2(0,T) \to L^2(0,T) \) given by (7) is well defined. Moreover, if \(u = \sigma T u \) for some \(\sigma \in [0,1] \), then

\[
S_\sigma u := u'' + \sigma g(t, u) = 0, \quad au(0) + bu'(0) = \sigma u_0, \quad cu(T) + du'(T) = \sigma u_T.
\]

Let \(\tilde{u} \in H^2(0,T) \) satisfy \(a\tilde{u}(0) + b\tilde{u}'(0) = \sigma u_0, c\tilde{u}(T) + d\tilde{u}'(T) = \sigma u_T \). Then:

\[
\|S_\sigma u - S_\sigma \tilde{u}\|_{L^2} \geq \int_0^T (S_\sigma u - S_\sigma \tilde{u})(u - \tilde{u})dt \\
\geq \lambda_1 \|u - \tilde{u}\|_{L^2}^2 - \int_0^T (g(t, u) - g(t, \tilde{u}))(u - \tilde{u})dt \geq (\lambda_1 - \gamma) \|u - \tilde{u}\|_{L^2}^2.
\]

It follows that

\[
\|u - \tilde{u}\|_{L^2} \leq \frac{1}{\lambda_1 - \gamma} \|S_\sigma u - S_\sigma \tilde{u}\|_{L^2} = \frac{1}{\lambda_1 - \gamma} \|S_\sigma \tilde{u}\|_{L^2}.
\]

Thus, if we fix \(z \in H^2(0,T) \) such that \(az(0) + bz'(0) = u_0, cz(T) + dz'(T) = u_T \), then setting \(\tilde{u} = \sigma z \) we obtain:

\[
\|u - \sigma z\|_{L^2} \leq \frac{\sigma}{\lambda_1 - \gamma} \|z'' + g(\cdot, \sigma z)\|_{L^2} \leq C
\]

for some constant \(C \) independent of \(\sigma \). This implies that all solutions of the problem \(u = \sigma T u \) satisfy \(\|u\|_{L^2} \leq M \) for some constant \(M \), and the existence of a fixed point of \(T \) follows from the Leray-Schauder theorem (see e.g. [5]).

Finally, if \(u \) and \(\tilde{u} \) are solutions of (1), then \(S_1 u = S_1 \tilde{u} = 0 \). As before,

\[
\|u - \tilde{u}\|_{L^2} \leq \frac{1}{\lambda_1 - \gamma} \|S_1 u - S_1 \tilde{u}\|_{L^2} = 0.
\]

\[\square\]

2.2 An iterative procedure for problem (1)

In what follows of this section we shall embed problem (1) in a family of problems

\[
(1)_\sigma \begin{cases}
 u''(t) + \sigma g(t, u) = 0 \\
 au(0) + bu'(0) = u_0 \\
 cu(T) + du'(T) = u_T.
\end{cases}
\]

Starting at a solution \(u_\sigma \) for \(\sigma < 1 \) we shall define recursively a sequence that converges to a solution of \((1)_{\sigma + \epsilon} \) for some step \(\epsilon \leq 1 - \sigma \).

As a basic assumption, we shall assume that \(g \) is \(C^2 \) with respect to \(u \), and \(\frac{\partial g}{\partial u} \leq \gamma < \lambda_1 \). In particular, note that (4) holds.
Let \(u_\sigma \) be a solution of \((1)_\sigma \) and consider the sequence \(\{ u_n \} \subset H^2(0, T) \) given recursively by \(u_1 = u_\sigma \), and \(u_{n+1} \) the unique solution of the linear problem:

\[
\begin{aligned}
&\frac{d^2}{dt^2} u_{n+1} + (\sigma + \varepsilon) \left(g(t, u_n) + \frac{\partial g}{\partial u}(t, u_n) (u_{n+1} - u_n) \right) = 0 \\
&au_{n+1}(0) + bu'_{n+1}(0) = u_0 \\
cu_{n+1}(T) + du'_{n+1}(T) = u_T.
\end{aligned}
\]

(8)

From the Fredholm alternative for linear operators (and also as a particular case of Theorem 2.2) sequence \(\{ u_n \} \) is well defined. Moreover, if \(u_n \to u \) in the \(L^2 \)-norm, then it is easy to see that \(u \) is a solution of \((1)_{\sigma + \varepsilon} \).

Let \(z_n = u_{n+1} - u_n \), then for \(n \geq 2 \) we have:

\[
z_n'' + (\sigma + \varepsilon) \frac{\partial g}{\partial u}(t, u_n) z_n = -(\sigma + \varepsilon) [g(t, u_n) - g(t, u_{n-1}) - \frac{\partial g}{\partial u}(t, u_{n-1})(u_n - u_{n-1})]
\]

\[
= -\frac{1}{2} (\sigma + \varepsilon) \frac{\partial^2 g}{\partial u^2}(t, \xi) z_{n-1}^2
\]

for some mean value \(\xi(t) \) between \(u_n(t) \) and \(u_{n-1}(t) \). Then, for some constant \(\mu \) (independent of \(\sigma \)):

\[
\| z_n \|_{H^1} \leq \mu \left\| \frac{d^2}{dt^2} + (\sigma + \varepsilon) \frac{\partial g}{\partial u}(\cdot, u_n) z_n \right\|_{L^2} \leq \frac{\mu}{2} \left\| \frac{\partial^2 g}{\partial u^2}(\cdot, \xi) z_{n-1}^2 \right\|_{L^2} \leq C_n \| z_{n-1} \|^2_{H^1}
\]

for some constant \(C_n \). In particular, if \(\frac{\partial^2 g}{\partial u^2} \) is bounded, we may consider \(C_n = C := \frac{\mu \nu}{2} \| \frac{\partial^2 g}{\partial u^2} \|_{L^\infty} \) for every \(n \), where \(\nu \) is the constant of the imbedding \(H^1(0, T) \hookrightarrow L^4(0, T) \). On the other hand,

\[
z_1'' + (\sigma + \varepsilon) \frac{\partial g}{\partial u}(t, u_1) z_1 = -u_1'' - (\sigma + \varepsilon) g(t, u_1) = -\varepsilon g(t, u_1),
\]

whence \(\| z_1 \|_{H^1} \leq \mu \varepsilon \| g(\cdot, u_1) \|_{L^2} \). Thus we obtain:

Theorem 2.3. Assume that (2) and (6) hold, and let \(u_1 = u_\sigma \) be a solution of \((1)_\sigma \) for some \(\sigma \in [0, 1) \). Furthermore, assume that \(\frac{\partial g}{\partial u} \leq \gamma < \lambda_1 \) for some constant \(\gamma \), and that \(\frac{\partial^2 g}{\partial u^2} \) is bounded. Then the iterative scheme defined by (8) converges to a solution of \((1)_{\sigma + \varepsilon} \), provided that \(\mu \varepsilon C \| g(\cdot, u_\sigma) \|_{L^2} < 1 \), with \(C \) and \(\mu \) as before.

Proof. From the previous computations, we deduce that

\[
\| z_{n+1} \|_{H^1} \leq C^{2n-1} \| z_1 \|^2_{H^1} \leq \frac{1}{C} \left(\mu \varepsilon C \| g(\cdot, u_\sigma) \|_{L^2} \right)^{2n}.
\]

Then \(\{ u_n \} \) is a Cauchy sequence in \(H^1(0, T) \), and the proof follows. \(\square \)
Corollary 2.4. Let the assumptions of the previous theorem hold. Further, assume that \(g \) is bounded. Then the step \(\varepsilon \) in the iterative scheme defined by (8) can be chosen independently of \(\sigma \). In particular, there exists a sequence \(0 = \sigma_0 < \sigma_1 < \ldots < \sigma_N = 1 \), with \(u_{\sigma_j} \) solution of (1)\(_{\sigma_j}\) constructed recursively from (8), and \(u_{\sigma_N} \) is a solution of (1).

3 Resonant case: Landesman-Lazer type conditions

In this section we study problem (1) for \(u_0 = u_T = 0 \) under the assumption of resonance at the first eigenvalue \(\lambda_1 = 0 \); namely, we consider the case in which the condition

\[
ad - bc + acT = 0
\]

(9)

holds. The proof of following lemma is straightforward:

Lemma 3.1. Assume that (2) and (9) hold. Let \(E \subset C^2([0,T]) \) and \(F \subset C([0,T]) \) the closed subspaces defined by

\[
E = \{ u \in C^2([0,T]) : au(0) + bu'(0) = cu(T) + du'(T) = 0, \quad \int_0^T u(t)\varphi_1(t)dt = 0 \}
\]

and \(F = \{ \theta \in C([0,T]) : \int_0^T \theta(t)\varphi_1(t)dt = 0 \} \). Then the continuous linear operator \(L : E \rightarrow F \) given by \(Lu = u'' \) is bijective, and hence an isomorphism. In particular, there exists a constant \(\gamma \) such that \(\|u\|_{C^2} \leq \gamma \|u''\|_C \) for every \(u \in E \).

In order to introduce appropriate Landesman-Lazer conditions for our problem, we shall assume that the following limits exist:

\[
\lim_{s \to \pm \infty} g(t,s\varphi_1(t)) := g^\pm(t). \quad (10)
\]

Thus, the main result of this section reads:

Theorem 3.2. Assume that (2) and (9) hold, and that the limits (10) exist. Then problem (1) for \(u_0 = u_T = 0 \) admits at least one solution, provided that one of the following conditions holds:

\[
\int_0^T g^+(t)\varphi_1(t)dt < 0 < \int_0^T g^-(t)\varphi_1(t)dt, \quad (11)
\]

\[
\int_0^T g^-(t)\varphi_1(t)dt < 0 < \int_0^T g^+(t)\varphi_1(t)dt. \quad (12)
\]
Proof. Let us first observe that, for $\sigma > 0$, problem
\[
\begin{aligned}
\begin{cases}
u'' + \sigma g(t, u) &= 0 \\
u(0) + bu'(0) &= cu(T) + du'(T) = 0
\end{cases}
\end{aligned}
\] (13)
is equivalent to the fixed point problem
\[
u = \langle u - g(\cdot, u), \varphi_1 \rangle \varphi_1 - \sigma K(g(\cdot, u) - \langle g(\cdot, u), \varphi_1 \rangle \varphi_1),
\] (14)
where $K : F \to E$ is the inverse of the mapping L defined in Lemma 3.1, and $\langle \cdot, \cdot \rangle$ denotes the usual inner product of $L^2([0, T])$, namely $\langle \theta, \xi \rangle = \int_0^T \theta(t)\xi(t)dt$. Indeed, if u is a solution of (13) then $\langle u'', \varphi_1 \rangle = \langle u, \varphi_1'' \rangle = 0$, which implies $\langle g(\cdot, u), \varphi_1 \rangle = 0$, and
\[
u - \langle u, \varphi_1 \rangle \varphi_1 = -\sigma K(g(\cdot, u)).
\]
Conversely, if u solves (14) then $u'' = -\sigma [g(t, u) - \langle g(\cdot, u), \varphi_1 \rangle \varphi_1]$. Moreover, $\langle u, \varphi_1 \rangle = \langle u - g(\cdot, u), \varphi_1 \rangle$, and hence $\langle g(\cdot, u), \varphi_1 \rangle = 0$. Thus, it suffices to prove that (14) is solvable for $\sigma = 1$. On the other hand, observe that if $\sigma = 0$ then (14) is equivalent to the equalities
\[
u = k\varphi_1, \quad \langle g(\cdot, u), \varphi_1 \rangle = 0.
\]
Let $T_\sigma : C([0, T]) \to C([0, T])$ be the compact operator defined by
\[
u = \langle u - g(\cdot, u), \varphi_1 \rangle \varphi_1 - \sigma K(g(\cdot, u) - \langle g(\cdot, u), \varphi_1 \rangle \varphi_1),
\]
and consider $F_\sigma(u) = \nu - T_\sigma \nu$. We claim that $F_1(u) = 0$ for some u, which corresponds to a solution of the original problem. Indeed, we shall prove that
\begin{enumerate}
\item $F_\sigma(u) \neq 0$ for $\|u\|_C$ large, and $\sigma \in [0, 1]$.
\item $deg_{LS}(F_0, B_R, 0) = \pm 1$ for R large enough, where $B_R \subset C([0, T])$ is the ball of radius R centered at 0 and deg_{LS} denotes the Leray-Schauder degree.
\end{enumerate}

We remark that once 1 and 2 are proved, the result follows from the homotopy invariance of the Leray-Schauder degree. In order to prove 1, assume first that $F_{\sigma_n}u_n = 0$, with $\|u_n\|_C \to \infty$ and $\sigma_n \in (0, 1]$. Then $u''_n + \sigma_n g(t, u_n) = 0$, and hence
\[
u = \langle u'', \varphi_1 \rangle = -\sigma_n \int_0^T g(t, u_n)\varphi_1(t)dt.
\]
On the other hand, we may write $u_n = v_n + \langle u_n, \varphi_1 \rangle \varphi_1$, and from the previous lemma
\[
u \leq \gamma \|v_n\|_C = \gamma \|u''_n\|_C \leq \gamma \|g(\cdot, u_n)\|_C \leq M.
\]
for some constant M. We deduce that $c_n := \langle u_n, \varphi_1 \rangle \to \infty$. Taking a subsequence, assume for example that $c_n \to +\infty$, then by dominated convergence

$$0 = \int_0^T g(t, u_n)\varphi_1(t)dt = \int_0^T g(t, v_n + c_n \varphi_1)\varphi_1(t)dt \to \int_0^T g^+(t)\varphi(t)dt \neq 0,$$

a contradiction. On the other hand, if $F_0u_n = 0$, with $\|u_n\|_C \to \infty$, then $u_n = c_n \varphi_1$ and $\int_0^T g(t, c_n \varphi_1(t))\varphi_1(t)dt = 0$. Applying dominated convergence as before, the claim follows.

Finally, we shall compute the Leray-Schauder degree $\deg_{LS}(F_0, B_R, 0)$ for R large. As the range of T_0 is contained in $S := \text{span}\{\varphi_1\}$, it suffices to compute the Brouwer degree $\deg_B(F_0|_S, B_R \cap S, 0)$. Furthermore, $F_0|_S$ can be identified with the mapping $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(r) = \int_0^T g(t, r\varphi_1(t))\varphi_1(t)dt$. Again, by dominated convergence we have that

$$\lim_{r \to \pm \infty} \phi(r) = \int_0^T g^\pm(t)\varphi_1(t)dt.$$

Hence, $\phi(r)\phi(-r) < 0$ for $r \gg 0$, and it follows that $\deg_B(F_0|_S, B_R \cap S, 0) = \pm 1$ for R large enough.

Acknowledgements The authors are grateful to the anonymous referee for the careful reading of the original manuscript and his/her fruitful corrections and remarks. This work was partially supported by the project PIP 5477, CONICET.

References

Dirección de los autores: Pablo Amster, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, pamster@dm.uba.ar. — Pedro P. Cárdenas, Departamento de Matemáticas - Universidad Tecnológica de Pereira, Colombia, ppablo@utp.edu.co.