CARACTERÍSTICAS Y ELEMENTOS DEL PENSAMIENTO VARIACIONAL Y
SU CORRESPONDENCIA CON LA PRUEBA SABER 11

Luís Fernando Sánchez Arturo
Código: 0646305-3487

UNIVERSIDAD DEL VALLE
INSTITUTO DE EDUCACIÓN Y PEDAGOGÍA
LICENCIATURA EN MATEMÁTICA Y FÍSICA
Abril 2013
CARACTERÍSTICAS Y ELEMENTOS DEL PENSAMIENTO VARIACIONAL Y

SU CORRESPONDENCIA CON LA PRUEBA SABER 11

Luís Fernando Sánchez Arturo

Código: 0646305-3487

Trabajo de grado para optar por el título de licenciado en matemática y física

Tutor:

Profesora María Teresa Narváez

UNIVERSIDAD DEL VALLE

INSTITUTO DE EDUCACIÓN Y PEDAGOGÍA

LICENCIATURA EN MATEMÁTICA Y FÍSICA

Abril 2013
TABLA DE CONTENIDO

Resumen ... 6
Introducción.. 7
1. PRESENTACION DEL PROBLEMA.. 9
 1.1 Objetivo general.. 11
 1.2 Objetivos específicos ... 11
 1.3 Justificación .. 12
2. MARCO TEORICO .. 15
 2.1 El pensamiento variacional ¿Qué es y cómo se desarrolla? .. 15
 2.2 Elementos relacionados con el pensamiento variacional .. 16
 2.3 Características relacionadas con el pensamiento variacional .. 17
 2.4 Evaluación matemática ... 19
 2.4.1 Naturaleza de la evaluación matemática en general ... 19
 2.4.2 La evaluación matemática desde los estándares de competencias 22
 2.4.3 Una mirada histórica a las pruebas ICFES(ahora SABER 11) en el país 23
 2.4.4 Situación actual prueba SABER 11 ... 24
 2.4.5 Naturaleza de la evaluación matemática en la prueba SABER 11 24
 2.4.6 ¿Qué es la prueba SABER 11? .. 26
 2.4.7 Estructura del examen de estado prueba SABER 11 ... 26
 2.5 Perspectiva curricular .. 27
 2.5.1 Desde los lineamientos curriculares ... 27
 2.5.2 Estándares de competencias (Desde los procesos matemáticos) 30
 2.5.3 Coherencia vertical .. 34
 2.6 Metodología propuesta .. 36
3. ANÁLISIS DE ALGUNAS PREGUNTAS EN BASE A ELEMENTOS Y CARACTERÍSTICAS DEL PENSAMIENTO VARIACIONAL ... 37
 3.1 Ítems seleccionados ... 37
 3.2 Rejilla de clasificación para los ítems seleccionados ... 38
 Tabla 6.Rejilla comparativa de los ítems seleccionados .. 39
4. ANÁLISIS DE LOS RESULTADOS .. 64
5. CONCLUSIONES Y RECOMENDACIONES ... 65
6. REFERENCIAS BIBLIOGRÁFICAS .. 67
7. CONSULTAS REALIZADAS EN INTERNET ... 69
Lista de Tablas

Tabla 2. Porcentaje de estudiantes por niveles de competencia en Cali en la prueba SABER 11-2011. www.icfes.gov.co
Tabla 3. Criterios generales de evaluación del área de Matemáticas. Orientaciones para el examen de ensayo de educación media ICFES PRE SABER 11°
Tabla 4. Estructura general del examen de estado. Extraída de la Guía De Orientación Examen De Estado ICFES – 2010
Tabla 5. Presentación de cada uno de los ítems seleccionados para el trabajo
Tabla 6. Rejilla comparativa de los ítems seleccionados
Figura 1. Propuesta de desarrollo del pensamiento variacional. ... 33
Figura 2. Metodología para implementar en la concordancia de las preguntas. 36
Figura 3. Pregunta prueba Saber-2003 ... 40
Figura 4. Pregunta prueba SABER 11-2004 .. 42
Figura 5. Pregunta prueba SABER 11-2004 .. 43
Figura 6. Pregunta prueba SABER 11-2004 .. 44
Figura 7. Pregunta prueba Saber-2005 ... 47
Figura 8. Pregunta prueba Saber-2005 ... 48
Figura 9. Pregunta prueba Saber 2006 ... 51
Figura 10. Pregunta prueba Saber-2006 ... 53
Figura 11. Pregunta prueba Saber-2006 ... 55
Figura 12. Pregunta prueba Saber-2006 ... 56
Figura 13. Pregunta prueba Saber-2006 ... 57
Resumen

Este informe del proyecto de grado de la licenciatura en matemáticas y física está basado en la inquietud de indagar acerca de la coherencia entre lo que se plantea en la teoría sobre el pensamiento variacional y lo que evalúa la prueba SABER 11 propuesta por el Ministerio de Educación Nacional a través del Instituto Colombiano para el Fomento de la Educación Superior ICFES, caracterizando la variación desde algunos referentes teóricos para determinar su coherencia con la evaluación externa -prueba SABER 11- que se aplica a los estudiantes que culminan la educación media, estableciendo su objetividad y completitud.

Se realizó una descripción del pensamiento variacional tomando como referencia los planteamientos de autores e investigadores en Educación Matemática, los lineamientos curriculares y los estándares básicos de competencias. Se determinó la posible concordancia con lo planteado en referentes teóricos, al analizar varias preguntas liberadas por el ICFES de la prueba SABER 11 realizada por el Ministerio de Educación Nacional (MEN) relacionadas con la variación.

Se reconoció que este tipo de prueba es un indicador cercano cuando evalúa las nociones conceptuales relacionadas con el pensamiento variacional. Los resultados evidenciaron que todos los elementos y características del pensamiento variacional están incluidos en los cuestionarios de la prueba SABER 11 en matemática pero no proporcionalmente ó en la misma dimensión según lo corroborado en esta propuesta.

Palabras claves: pensamiento variacional, características y elementos del pensamiento variacional, lineamientos y estándares curriculares, evaluación matemática, prueba saber11.
Introducción

En este documento se presenta al Instituto de Educación y Pedagogía de la Universidad del Valle y a la comunidad de educadores matemáticos en Colombia una propuesta analítica y descriptiva que permite un acercamiento significativo a las situaciones de variación, desde algunos referentes teóricos planteados por el Ministerio de Educación Nacional en los lineamientos curriculares, los estándares básicos de competencias y otros autores investigadores en la didáctica de las matemáticas, indagando como las características de este pensamiento se involucran en las preguntas propuestas en los cuestionarios de las pruebas SABER 11.

La idea general es describir inicialmente los mecanismos a través de los cuales opera y evalúa el Ministerio de Educación Nacional (MEN) a través del ICFES (Instituto Colombiano para el Fomento de la Educación Superior) en términos de conocimientos matemáticos evaluados en algunas pruebas SABER 11 realizadas desde el año 2003 al 2010, realizando una selección de preguntas de algunos de los cuestionarios, indagando si las características y elementos relevantes del pensamiento variacional están presentes en la mayoría de las preguntas de manera proporcional de dichas pruebas.

El interés particular es conocer y describir a manera de aporte constructivo al modelo evaluativo del ICFES si lo que se evalúa en la prueba involucra conceptualmente todo lo concerniente a las situaciones, fenómenos o procesos cambiantes denominado pensamiento variacional, basado en algunos documentos que serán un referente para la elaboración y la indagación de preguntas extraídas de cuadernillos oficiales, liberados por el Ministerio de Educación Nacional a través de los años que se aplica a los estudiantes que culminan la educación media, estableciendo el nivel de objetividad y lo completa en términos proporcionales que puede llegar a ser en el sentido de la inclusión mencionada.

En el primer capítulo se realiza la presentación del problema que consiste en cómo los elementos y características del pensamiento variacional pueden estar incluidos en la prueba SABER 11, en sus diferentes cuestionarios presentados año tras año, y esto cómo puede
afectar la visión y análisis objetivo de las instituciones respecto a los niveles de sus estudiantes en el manejo de los conceptos; después se plantea un objetivo general, varios secundarios y la correspondiente justificación del problema como tal, que es básicamente observar algunos cuestionarios liberados por el ICFES e indagar si estos incluyen y de qué manera lo que proponen los lineamientos curriculares y los estándares en términos de todo lo concerniente a los pensamientos matemáticos, tipos de conceptos ó temáticas, en este caso particular se seleccionó solo el pensamiento variacional para dejar abierta para otras propuestas los demás.

En el segundo capítulo se describe el marco teórico con los referentes del pensamiento variacional desde varios autores para establecer unas categorías llamadas elementos y características, también lo relacionado con el enfoque en evaluación matemática, la prueba SABER 11, los lineamientos curriculares, estándares y para finalizar la metodología propuesta.

En el tercer capítulo se hace la clasificación de las preguntas seleccionadas en una rejilla correspondiente por columnas y filas en términos de los ítems escogidos para este informe y de las características, elementos a los cual pueden relacionarse de acuerdo a la naturaleza de la pregunta.

En el cuarto capítulo se presenta el análisis de los resultados, la verificación de las características y elementos del pensamiento variacional de la rejilla correspondiente en que se clasificaron los ítems y cómo estos están distribuidos en los tipos de preguntas en mayor o menor proporción.
1. PRESENTACION DEL PROBLEMA

Al observar la estructura de preguntas propuestas en las pruebas SABER 11 de algunos años (desde pruebas del año 2003 hasta el 2010, no todos los años secuencialmente), las cuales deben involucrar los aspectos teóricos relacionados con los pensamientos matemáticos como el numérico variacional, geométrico, métrico y aleatorio, por ende al ser evaluados los estudiantes, De aquí el Ministerio de Educación Nacional obtendrá un indicador evaluativo al respecto en los elementos de la variación y esto evidencia de alguna manera cómo dominan globalmente los conceptos, la interpretación y resolución de problemas con respuesta tipo selección múltiple, llevando a unos informes de resultados por instituciones educativas.

Tal vez el aporte de este análisis como ejercicio de verificación pueda contribuir a identificar la relación existente entre las características o elementos de la variación que se describirán más adelante y si hacen parte de un cuestionario general de preguntas, así como si también reflejen tal vez una medida objetiva de las fortalezas en términos de manejo de los conceptos de los estudiantes que presentan la prueba y posiblemente también en otros pensamientos matemáticos.

A continuación se muestra un ejemplo tipo pregunta de la prueba SABER 11, señalando el componente, competencia a evaluar, la clave de respuesta y los porcentajes de las opciones de respuesta.

Deforestación: En la última década se ha observado que debido a la deforestación, la extensión de un bosque se ha venido reduciendo aproximadamente en un 10% anual. Actualmente el bosque tiene una extensión de 200 kilómetros cuadrados.
La expresión que representa la extensión E del bosque en función del tiempo t que tarda en reducirse es:

A. $E=200(0,9)^t$
B. $E=200(0,1)^t$
C. $E=200−0,2t$
D. $E=200-0,8t$

Componente: Numérico-Variacional
Competencia: Solución de problemas
Clave: A

<table>
<thead>
<tr>
<th>Porcentaje por opciones de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>19</td>
</tr>
</tbody>
</table>

La pregunta de la prueba SABER 11 indaga por la construcción de una expresión que representa la determinación del modelo y la generalización de un proceso de deforestación, dicha expresión permite identificar la relación de variación existente entre dos variables. (Patrones y regularidades).

Para dar solución al problema el estudiante puede tal vez observar la regularidad, aplicando de manera consecutiva las condiciones dadas, construyendo una secuencia relativa a la extensión del bosque a medida que transcurren los años:

Extensión actual del bosque $E= 200$
Extensión actual del bosque dentro de 1 año $E= 200*0,9$
Extensión actual del bosque dentro de 2 años $E= 200*0.9*0.9$
Extensión actual del bosque dentro de 3 años $E= 200*0.9*0.9*0.9$
Extensión actual del bosque dentro de t años $E= 200*0.9*0.9…*0.9$

En este caso hallar la expresión generalizada de un problema donde se identifica un patrón y reconocer que el 10% anual se reduce a la extensión resultante de un cálculo anterior,
comprendiendo que la característica denominada patrones y regularidades debe ser entendida como una propiedad, una regularidad, una cualidad invariante que expresa una relación estructural entre los elementos de una determinada configuración, disposición, composición, en esta caso la extensión del bosque y el porcentaje de reducción.

Se pretende desde un acercamiento a unos ejemplos de preguntas retomados directamente de los cuestionarios oficiales de la prueba de Estado SABER 11, realizar una descripción argumentada fundamentalmente en que las características del pensamiento variacional planteadas desde los lineamientos curriculares y estándares estén relacionadas con las situaciones que plantea el ICFES para evaluar los estudiantes que culminan la educación media, entendiendose sus resultados como un indicador que permite reconocer lo que saben hacer, mediante un acto de valoración cuando se aplica y examina, lo que lleva al desarrollo central del interrogante de este anteproyecto:

¿Existe coherencia ó correspondencia entre lo que plantea el Ministerio de Educación Nacional de acuerdo al pensamiento variacional en la educación media y lo que se evalúa en los cuestionarios de la prueba externa SABER 11?

1.1 Objetivo general

Caracterizar la variación mediante algunos referentes teóricos para determinar su coherencia con la evaluación externa prueba SABER 11 que se aplica a los estudiantes que culminan la educación media, estableciendo su objetividad y completitud.

1.2 Objetivos específicos

- Realizar una descripción del pensamiento variacional tomando como referencia los planteamientos de autores e investigadores en educación matemática, los lineamientos curriculares y los estándares básicos de competencias.
- Determinar la concordancia con lo planteado en referentes teóricos, al analizar varias preguntas liberadas de la prueba de estado SABER 11 realizada por el Ministerio de Educación Nacional (MEN) relacionadas con la variación.
- Reconocer si la prueba SABER 11 es un indicador acertado y cercano al evaluar las nociones conceptuales que dominan los estudiantes en términos de la objetividad y la inclusión de todos los elementos.
- Dejar abierta la reflexión para la comunidad de educadores matemáticos e instituciones educativas de la manera en que se evalúa a los estudiantes a través de la prueba externa SABER 11 en relación a la variación y otros pensamientos a futuro.

1.3 Justificación

Este informe de proyecto de grado está basado en la inquietud de analizar la coherencia entre lo que se plantea desde unos referentes teóricos sobre la variación y lo que evalúa la prueba SABER 11 en sus cuestionarios.

Es muy importante conocer si lo que se evalúa en la prueba involucra desde lo conceptuales situaciones, fenómenos ó procesos cambiantes denominados variación y cómo puede esto servir al análisis de las preguntas propuestas y resultados obtenidos en el aula.

De alguna manera los indicadores de resultados de promedios históricos en la ciudad de Cali, que publicó el ICFES en competencias matemáticas en el año 2011, permiten plantear la inquietud respecto a que lo evaluado a través de la prueba SABER 11 tal vez no sea coherente o compatible con lo que se plantea desde los lineamientos curriculares y estándares, en términos de los diferentes pensamientos matemáticos.

Como información adicional del SNIEE (Servicio Nacional De Información Estadísticas Educativas) se puede tener en cuenta los promedios históricos en la ciudad de Cali-Valle en competencias matemáticas.
En los niveles de competencias evaluados por el examen de estado del ICFES se considera Bajo un puntaje menor o igual a 30 puntos, Medio mayor a 30 y hasta 70 y Alto mayor a 70. Observando la tabla 1, los porcentajes de estudiantes que se ubican en cada nivel muestran que aproximadamente el 96% de los estudiantes que presentan la prueba se ubican por debajo del nivel medio, y aproximadamente un 4% en el nivel alto.

Según lo anterior, esta propuesta consiste en realizar un análisis para determinar hasta qué punto se involucra una noción completa ó aproximada en sus preguntas en lo referente a la variación, para hacerse una idea clara de que lo objetiva y proporcional es en este aspecto esta evaluación y por ende determinar lo aptos que están los estudiantes que finalizan el ciclo escolar en educación media en términos de conocimientos y herramientas conceptuales para cuando están presentando este tipo de prueba externa.

Lo anterior permite de alguna manera la necesidad de hacer una reflexión constructiva a las instituciones educativas y a los educadores matemáticos en nivel de secundaria para que desde sus procesos pedagógicos en el aula, con los posibles cuestionarios de preparación para esta prueba que posean en las pruebas habituales de evaluación, pruebas cortas de
aula en los respectivos colegios, trabajen y enfoquen en fortalecer e introducir los elementos y características posibles de los pensamientos matemáticos desde la perspectiva de los lineamientos y estándares curriculares nacionales.

Básicamente es una propuesta encaminada a proponer que los educadores encaminen más los contenidos curriculares al reconocimiento y la máxima incorporación de todos los elementos posibles de cada pensamiento matemático, en particular el planteado en este documento, el de la variación identificándolo y reforzándolo constantemente en las dinámicas propias como talleres, pruebas tipo selección múltiple; esto brindaría un ambiente en el área con más proyección a los niveles superiores en la universidad y se orientaría en pro de una mejor calidad en educación.
2. MARCO TEORICO

En este capítulo se desarrollan algunos referentes teóricos del pensamiento variacional, se determinan sus elementos y características, para después realizar la clasificación de las preguntas según éstos y reconocer cómo están posiblemente en la prueba SABER 11, también se toca el tema de la evaluación matemática en general, en particular desde la prueba y por ende con los estándares y lineamientos curriculares. Para finalizar se describe la metodología y las fases que la constituyen.

2.1 El pensamiento variacional ¿Qué es y cómo se desarrolla?

A partir de lo propuesto por varios autores conocedores del tema como Vasco, (2002), Posada y otros autores, (2006), Posada y Villa, (2006), se describe en que consiste el pensamiento variacional:

El pensamiento variacional puede describirse aproximadamente como una manera de pensar dinámica, que intenta producir mentalmente sistemas que relacionen sus variables internas de tal manera que varíen conjuntamente en forma semejante a los patrones de cantidades de la misma o distintas magnitudes en los subprocesos recortados de la realidad.(Vasco, 2006,p. 138)

Esto es un camino iniciado con el estudio y la modelación de escenarios de variación a partir del análisis de contextos de las matemáticas, desde las ciencias, la vida cotidiana en los cuales se puedan modelar procesos de variación entre variables para desenvolver el pensamiento matemático que está ligado al álgebra y las funciones.

Es importante identificar y saber si hay un vínculo de las condiciones de contexto en donde las situaciones de cambio sean lo primordial en la actividad matemática, en la cual el conocimiento se da a través de la modelación y se utilizan estrategias que involucren la creatividad, elecciónde entre varias rutas o proponer otras para responder a una situación que implique el dominio de los conceptos.

El Pensamiento Variacional pone su acento en el estudio sistemático de la noción de variación y cambio en diferentes contextos: en las ciencias naturales
y experimentales, en la vida cotidiana y en las matemáticas mismas. (Posada et al., 2006, p.16).

Desde lo matemático hay una relación directa con los otros pensamientos, muy particularmente con el métrico, pues la variación se encarga fundamentalmente de la modelación matemática y esto requiere de la acción permanente de procesos de medición, prepara registros y establecer relaciones entre cantidades de magnitud.

Es así como la asimilación de las situaciones resultantes de la observación y sistematización de patrones y regularidades, tanto numéricas como geométricas, las variaciones proporcionales, las ciencias experimentales, la ingeniería y demás áreas del conocimiento que alcanzan más sentido cuando se estructuran desde el pensamiento variacional.

2.2 Elementos relacionados con el pensamiento variacional

En el proceso de análisis de las preguntas se deben localizar algunos tópicos, basándome en el texto de Posada, 2006, como por ejemplo:

- Determinar las cantidades (variables y constantes) que intervienen en la situación y las relaciones de dependencia entre ellas.
- Generación de los datos a consignar en una tabla, determinación de los intervalos de variación de las variables, aquellos que los estudiantes deben involucrar en sus procedimientos utilizados para resolver las preguntas como elementos conceptuales de la variación y el cambio.
- Interpretación de la información suministrada en una gráfica de acuerdo el tipo de función.

Estos elementos son fundamentales y están ligados a las características que se mencionan a continuación.
2.3 Características relacionadas con el pensamiento variacional

Entonces las características que se deben identificar en las preguntas podrían ser las mencionadas a continuación:

Reconocimiento de los patrones y regularidades entendidos como propiedades, unas regularidades, unas cualidades invariantes que expresan relaciones estructurales entre los elementos de una determinada configuración, disposición, composición, etc.(Posada et al, 2006, p.16)

Los patrones y regularidades existen y surgen de manera normal en las matemáticas y en otras áreas del saber. Estos pueden ser reconocidos, desarrollados y generalizados mediante la construcción de situaciones que incluyan procesos de variación y cambio. Es decir un mismo patrón se puede encontrar en muchas formas diferentes, tales como situaciones físicas, geométricas, aleatorias y numéricas. Esto indica que hay una estrecha relación con cada uno de los otros pensamientos que los profesores necesitan integrar para que haya un mejor aprendizaje de las matemáticas.

Se puede ser más efectivo, al expresar las generalizaciones de patrones y relaciones usando símbolos, lo que lleva generar procesos de generalización. Todo este trabajo permite poner de manifiesto distintos procesos matemáticos tales como el razonamiento, la comunicación y la resolución de problemas.

Los procesos algebraicos desde los contextos de variación y cambio hacen referencia a la forma de ver las expresiones algebraicas en las diversas situaciones que posibilitan expresar la generalización como las interrelaciones entre lenguajes verbal, icónico, gráfico y simbólico.

Desde un punto de vista tal, el álgebra deja de ser una interpretación de las reglas de la aritmética a través de letras, para transformarse en una nueva manera de pensar la matemática: la expresión de la generalidad.
Lo primordial es plantear a los estudiantes la reflexión frente a lo que cambia, lo que se conserva, y por ende, a las relaciones no variantes estructurales, pero fundamentalmente, permitirles que adviertan lo que observan y que explíciten dichas relaciones, que las transformen, que las expresen de diferentes formas, que hagan conjeturas y por tanto, que formulen hipótesis sobre alguna situación que analizan.

Se puede interpretar los procesos algebraicos como un espacio amplio en actividad matemática que convoque a la búsqueda de significados y relaciones, a la reflexión, a la comunicación de las observaciones y a la organización de los aprendizajes.

- El análisis de funciones que **tiene que ver con la experimentation, reflexión, construcción de significados y formas de expresar la generalidad como resultado de los procesos de modelación matemática de diversos** tipos de situaciones y tiene estrecha relación con los procesos algebraicos por las diferentes formas de representación que ésta brinda para estudiar las situaciones de variación, cambio y dependencia por las relaciones que se pueden establecer entre éstas. (Posada et al, 2006, p.17)

Al enfocarlas desde una perspectiva dinámica, **tienen que ver con los procesos de experimentation, reflexión, construcción de significados y formas de expresar la generalidad como resultado de los procesos de modelación matemática** de diferentes tipos de situaciones.

En los Lineamientos Curriculares se puede interpretar que uno de los caminos para armar de sentido este eje temático, es el relacionado con la contextualización de actividades que promuevan la modelación a partir del análisis de una situación a través de diferentes sistemas de representación: tabular, gráfico, verbal y la expresión simbólica. Un análisis en tal sentido implica la coordinación e interrelación entre los diferentes sistemas de representación a fin de lograr una construcción conceptual compleja.
También es necesario enfrentar a los estudiantes a situaciones donde la función no exhiba una regularidad, con el fin de alejar la idea de que su existencia ó definición está determinada por la existencia de la expresión algebraica (Ministerio de Educación Nacional, 1998).

Se han descrito aquí tanto los elementos como características propuestos como eje central de esta propuesta de concordancia en los cuestionarios desde la variación y se aborda ahora otro aspecto fundamental como lo es la evaluación en matemática.

2.4 Evaluación matemática

A continuación se describe la evaluación matemática, desde un aspecto general hasta llegar a la particularidad de la estructura actual de la prueba SABER 11.

2.4.1 Naturaleza de la evaluación matemática en general

Los Lineamientos Curriculares de Matemáticas, retoma el tema de la evaluación y en términos más específicos expresa:
“La evaluación debe ser formativa, continua, sistemática y flexible, centrada en el propósito de producir y recoger información necesaria sobre los procesos de enseñanza y de aprendizaje que tienen lugar en el aula y por fuera de ella. El papel de los docentes, institución y familia consiste en interpretar y valorar las informaciones obtenidas para tomar decisiones encaminadas a la cualificación de los aprendizajes de los alumnos y las estrategias...” y en otro aparte:
“La evaluación debe ser más una reflexión que un instrumento de medición para poner etiquetas a los individuos, aunque debe incluir la adquisición de informaciones, importan más las formas de actuación y las actitudes de los estudiantes, se debe evaluar continuamente al estudiante en comportamientos que muestren su trabajo cotidiano, su actitud, su interés; incluyendo elementos tan variados como concepciones, comprensión de conocimientos básicos, formas de comunicación, capacidad para aplicar conocimientos, para interpretar, plantear y resolver problemas, participación en tareas colectivas...”
La propuesta de evaluación que se plantea para el área, reitera los planteamientos de publicaciones sobre pruebas de Estado y pruebas SABER en el sentido de considerar como objeto de evaluación la competencia matemática, apartándose del énfasis exclusivo en contenidos matemáticos formales y aislados.

Retomando elementos de diferentes autores como Acevedo y García, 2000; LLECE, 2005; OCDE/PISA, 2003; Godino, 2002; y asumiendo las nuevas perspectivas respecto a la naturaleza de la educación matemática y de la evaluación, se propone que el objeto de evaluación, la competencia matemática:

Esté relacionada con el uso flexible y comprensivo del conocimiento matemático escolar en diversidad de contextos, de la vida diaria, de la matemática misma y de otras ciencias. Este uso se evidencia, entre otros, en la capacidad del individuo para analizar, razonar, y comunicar ideas efectivamente y para formular, resolver e interpretar problemas.

A continuación se muestra el cuadro de los criterios de evaluación, un ejemplo del logro y los posibles indicadores de acuerdo a los procesos de pensamiento:

<table>
<thead>
<tr>
<th>Competencias</th>
<th>Dimensión</th>
<th>Dominios</th>
<th>Niveles</th>
<th>Criterios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pensamiento matemático</td>
<td>Numérica</td>
<td>Resolución y planteamiento de problemas.</td>
<td>Adquisición</td>
<td>Comprensión e interpretación</td>
</tr>
<tr>
<td></td>
<td>Geométrica</td>
<td>Razonamiento.</td>
<td>Uso</td>
<td>Aplicación de diversas estrategias</td>
</tr>
<tr>
<td></td>
<td>Medición</td>
<td>Modelación.</td>
<td>Explicación</td>
<td>Justificación y generalización de soluciones y estratégicas</td>
</tr>
<tr>
<td></td>
<td>Aleatoria</td>
<td>Comunicación.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variación</td>
<td>Procedimientos</td>
<td>Control</td>
<td>Verificación e interpretación de resultados</td>
</tr>
</tbody>
</table>

Tabla 3. Criterios generales de evaluación del área de Matemáticas. Orientaciones para el examen de ensayo de educación media ICFES PRE SABER 11°
Los anteriores elementos son importantes en el desarrollo de las matemáticas y en el estudio del conocimiento matemático para llegar a la construcción de éste, utilizando recursos existentes en el entorno e integrando los distintos sistemas en lo cotidiano.

Además para establecer un marco de referencia para la evaluación en el área de matemáticas, a continuación se describen brevemente los estándares por grupos de grados:

Nivel Sexto a Séptimo

Al terminar el grado séptimo en lo que se refiere a los pensamientos numérico y variacional se propone uso significativo de los sistemas numéricos, manejo de las diferentes formas equivalentes de representación, decimal, fraccionaria, porcentajes, en la recta numérica, en diferentes situaciones matemáticas. Un uso comprensivo de las propiedades de las operaciones en los distintos sistemas numéricos y su aplicación a la resolución de problemas. (Acevedo y García, 2007, p.27)

Nivel Octavo a Noveno

En lo numérico y variacional, en estos grados, se hace énfasis en el uso comprensivo de los números reales en sus diferentes representaciones en diversos contextos. En la significación de variable, expresión, ecuación e inecuación, en la modelación de situaciones de variación con funciones en polinomios y en la solución de problemas en contextos matemáticos y no matemáticos que involucren ecuaciones lineales. (Acevedo y García, 2007, p.28)

Nivel Décimo a Undécimo

En lo numérico-variacional, se considera como fundamental el conocimiento del conjunto de los números reales, las propiedades de las operaciones, la densidad y la distinción entre números racionales e irracionales. Uno de los elementos centrales a considerar es la apropiación del concepto de función analizando variación y relaciones entre diferentes representaciones y su uso comprensivo a través de la modelación con funciones en polinomios, exponenciales y logarítmicas, abordar situaciones que requieran nociones
intuitivas de aproximación y límite. Al finalizar este nivel se espera una aproximación del estudiante a la noción de derivada como razón de cambio instantánea en contextos matemáticos y no matemáticos. (Acevedo y García, 2007p.29)

Ya descritos desde los estándares por niveles en el pensamiento variacional con ese marco referencial se continúa tomando desde las competencias como tal.

2.4.2 La evaluación matemática desde los estándares de competencias

Para obtener información de calidad sobre las acciones de los estudiantes se deben precisar los criterios de referencia acordes con lo que se cree es el nivel exigible de la actividad matemática en el conjunto de grados al que pertenece y la calidad de los juicios que se expresen sobre el avance. Depende de un amplio número de evidencias de las actuaciones obtenidas de diversas fuentes de información y de situaciones que promulguen las elaboraciones pictóricas y escritas.

La evaluación es uno de los temas más complejos en la formación por competencias, pues implicaría una reforma radical del sistema educativo, esencialmente el cambio de una evaluación por logros a una evaluación por procesos, por lo tanto no se evalúa un resultado sino todo el proceso de aprendizaje, en el que a su vez interviene el contexto, la motivación, los sistemas simbólicos y el desarrollo en lo cognitivo. (Revista Iberoamericana de Educación ISSN: 1681-5653)

Lo anterior sugiere hacer un seguimiento al proceso de aprendizaje desde la motivación y la vocación misma hasta la ejecución de la acción y su consecuente resultado, analizando comparativamente el conocimiento de estudiantes inicialmente con los resultados obtenidos al finalizar y evaluar el conjunto de acciones que se adelantan en una posterior intervención de manera cuantitativa en porcentajes y promedios.

La evaluación se desarrollará a través de la experiencia asociada al talento matemático integral (inteligencia, pensamiento, consciencia y afectividad matemática) y en el marco de las interrelaciones entre los saberes matemáticos (álgebra, análisis, geometría, estadística, entre otras áreas), y una formación
Ahora se dará una mirada descriptiva a la prueba que concierne en este proyecto la llamada prueba SABER 11.

2.4.3 Una mirada histórica a las pruebas ICFES(ahora SABER 11) en el país

Algunos de los eventos de las pruebas ICFES ahora llamadas SABER desde sus inicios son los siguientes:

- El examen ICFES se ha aplicado en forma continua desde 1968; desde los años 80 existe la expectativa de que este examen produzca información sobre calidad de la educación.
- El examen se adecuó a este propósito en 2000 (nuevo ICFES); proceso de ajuste continua.
- Desde 2003 se aplican pruebas de egreso de educación superior (ECAES)
- Creación del Vice ministerio de Educación Superior, traslado de funciones al MEN en 2003 y especialización del ICFES en evaluación.
- Expedición de Ley 1324 de 2009 y decretos reglamentarios.
- Desde los 90, por solicitud del MEN, el ICFES evalúa la calidad de la educación básica (SABER). Colombia ha participado en 8 evaluaciones internacionales.

La prueba es un requerimiento autorizado para desempeñarse en la vida académica y que, de otra parte, son los conocimientos y habilidades que debe promover la educación en nivel básico y medio. Así se espera que los colegios con su propia dinámica traten de responder a la exigencia externa, pues los puntajes obtenidos se han tomado como criterio importante de valoración de la calidad de una institución, entonces teniendo en cuenta ley 1324 de 2009 que se decretó para transformar el ICFES (El nuevo ICFES y el sistema de evaluación de la educación, 2010, p. 7) y que pudiera responder a los requerimientos de un nuevo sistema de evaluación con los siguientes criterios:
• Establece parámetros y criterios para las evaluaciones externas: comparación, independencia, periodicidad y reserva.

• Establece dos exámenes de Estado a cargo del ICFES: de Educación Media y de Educación Superior, obligatorios para ingresar a la educación superior y obtener título de pregrado.

• El Propósito de los exámenes es brindar información que sirva como base para programas de mejoramiento y para la inspección y vigilancia del servicio educativo.

La prueba comenzó aproximadamente hace 4 décadas y se ha ido estructurando poco a poco con modificaciones hasta la actual prueba llamada SABER 11, los resultados permiten a los docentes, directivos docentes y autoridades municipales, regionales y nacionales tomar decisiones para elaborar planes de mejoramiento por áreas, en este caso Matemáticas, y por ende planes de mejoramiento institucional.

2.4.4 Situación actual prueba SABER 11

La prueba es un requerimiento autorizado para desempeñarse en la vida académica y que, de otra parte, son los conocimientos y habilidades que debe promover la educación en nivel básico y medio. Así se espera que los colegios con su propia dinámica traten de responder a la exigencia externa, pues los puntajes obtenidos se han tomado como criterio importante de valoración de la calidad de una institución, entonces teniendo en cuenta ley 1324 de 2009 que se decretó para transformar el ICFES (El nuevo ICFES y el sistema de evaluación de la educación, 2010, p. 7) y que pudiera responder a los requerimientos de un nuevo sistema de evaluación.

2.4.5 Naturaleza de la evaluación matemática en la prueba SABER 11

La propuesta de evaluación que se plantea para el área en la prueba SABER 11 hace reiteración en considerar como objeto de evaluación la competencia matemática.

Los conceptos evaluados, procedimientos, destrezas, que se conciben como situaciones en las que los estudiantes identifican, seleccionan y usan estrategias adecuadas para lograr
soluciones válidas en el pensamiento matemático permiten dar cuenta de procesos significativos en la construcción de ese, en tanto que para solucionar problemas debe de alguna manera modelar, representar y enfrentarse a situaciones que le amplían y posibilitan la construcción de distintos sentidos de un concepto.

A través de actividades problema se pretende no sólo destacar la importancia de la resolución de problemas en la aclaración significativa de los conocimientos matemáticos, sino incidir sobre las prácticas y resultados logrados en las competencias por los estudiantes enfrentándolos a situaciones abiertas que les exijan seleccionar diversas estrategias, discutir la posibilidad de más de la solución adecuada, esto es, problemas propios del verdadero hacer matemático en este contexto.

Los objetivos del examen de Estado de la educación media (SABER 11°) son los siguientes:

- Requisito obligatorio para el ingreso a la educación superior.
- Información para los estudiantes sobre sus competencias en las diferentes áreas: apoyo para la orientación sobre su opción profesional.
- Criterio para auto evaluación de los establecimientos educativos en función de sus proyectos educativos y planes de mejoramiento.(Examen de Estado de la educación media – ICFES SABER 11°,2010)

Los conceptos evaluados, procedimientos, destrezas, que se conciben como situaciones en las que los estudiantes identifican, seleccionan y usan estrategias pertinentes y adecuadas para lograr soluciones válidas en el pensamiento matemático a desarrollar, permiten dar cuenta de procesos significativos en la construcción de ese, en tanto que para solucionar problemas se debe de alguna manera modelar, representar y enfrentarse a situaciones que le amplían y posibilitan la construcción de distintos sentidos de un concepto, se reconoce lo intuitivo como un elemento que potencia en el sentido de abrir caminos en el proceso de interpretar mejor las preguntas.
A través de las preguntas propuestas en las prueba se pretende, no sólo destacar la importancia de la resolución de problemas en la aclaración significativa de los conocimientos matemáticos sino incidir sobre las prácticas y resultados logrados en esta competencia por los estudiantes enfrentándolos a situaciones abiertas de que les exijan seleccionar diversos caminos o estrategias, discutir posibilidades además de la solución adecuada, esto es, problemas propios del verdadero hacer matemático en este contexto.

2.4.6 ¿Qué es la prueba SABER 11?

La prueba SABER11 básicamente tiene como finalidad apoyar los procesos de selección y admisión que realizan las Instituciones de Educación Superior. Además tiene que ver con el impacto que los resultados tienen en la comunidad educativa, los cambios del sistema educativo nacional y las demandas de orden social, económico y cultural, que las comunidades internacional y nacional exigen de los egresados del ciclo de Educación Media.

El logro de lo anterior depende de las acciones que el ICFES realice y del uso adecuado que la comunidad académica, medios de comunicación y usuarios hagan del Examen de Estado y de sus resultados. Para lo cual se sugiere que las Instituciones de Educación Básica, Media y Superior incorporen el tema de la evaluación educativa en sus procesos.

2.4.7 Estructura del examen de estado prueba SABER 11

La estructura de la prueba actual se fundamenta en un núcleo común de 24 preguntas en áreas como lenguaje, matemática, biología, química, otras con 30 preguntas como física, filosofía, las de 45 preguntas de áreas como ciencias sociales e inglés, después un componente flexible en profundización en áreas como matemática, lenguaje, biología y ciencias sociales con una prueba interdisciplinaria en violencia y sociedad o medio ambiente con 15 preguntas cada una.

La siguiente tabla se muestra la estructura del examen de estado actual:
Ya teniendo la estructura del examen como tal que propone el ICFES entonces se pasa a describir desde el currículo que maneja el ministerio de Educación Nacional lo relacionado básicamente con el pensamiento variacional que es de interés particular de este informe.

2.5 Perspectiva curricular

Se referencia desde los lineamientos curriculares y los estándares básicamente el pensamiento variacional que es el de interés particular en el presente informe.

2.5.1 Desde los lineamientos curriculares

Las temáticas relacionadas con la variación son la proporcionalidad, magnitudes directa e inversa proporcional, repartos directo e inverso, regla de tres simple, compuesta, clases de funciones, dominios, rangos, logaritmos, ecuacion de la recta, progresiones aritmeticas y geometricas, secciones cónicas, valor absoluto, desigualdades,
el álgebra en su sentido simbólico particularmente la noción y significado de la variable, modelos tipo aditivo, multiplicativo, medición del cambio absoluto, relativo.

Según los lineamientos curriculares es primordial relacionar los contenidos del aprendizaje con la experiencia cotidiana y con los saberes que circulan en la escuela, entre éstos, desde luego, las disciplinas científicas. En concordancia con este planteamiento se deben tener en cuenta para la organización curricular tres aspectos: los conocimientos básicos, los procesos generales y el contexto.

Conocimientos Básicos, referidos a los procesos específicos que desarrollan el pensamiento matemático y a los sistemas de las matemáticas (simbólicos, sistemas de representación, estructuras). Involucran conceptos y procedimientos, que están interrelacionados unos con otros.

Procesos generales, que tienen que ver con el aprendizaje, tales como el razonamiento; la resolución y planteamiento de problemas; la comunicación; la modelación y la elaboración, comparación y ejercitación de procedimientos.

Contexto, que tiene que ver con los ambientes que rodean al estudiante y que les dan sentido a las matemáticas que aprende. Variables como las condiciones sociales y culturales tanto locales como internacionales, el tipo de interacciones, los intereses que se generan, las creencias, así como las condiciones económicas del grupo social en el que se concreta el acto educativo, deben tenerse en cuenta en el diseño y ejecución de experiencias didácticas. (Ministerio de Educación Nacional, 1998, p.18). *Matemáticas. Lineamientos curriculares.*

En los pensamientos matemáticos se hace alusión directa al variacional y se proponen como uno de los logros para alcanzar en la educación básica, lo cual presupone superar la enseñanza de contenidos matemáticos aislados para ubicarse en un campo conceptual, que involucre procedimientos con estructuras en común y vinculados que permitan de alguna manera analizar, organizar y modelar situaciones-problema provenientes de otras ciencias o de las mismas matemáticas.
De esta forma se plantea que se amplía la visión de la variación, por cuanto su estudio se inicia en el intento de cuantificarla por medio de las cantidades y las magnitudes y se reconoce la necesidad de estudiar con detalle los conceptos, procedimientos y métodos que involucra la variación para poner al descubierto las interpelaciones entre ellos.

Entre los diferentes sistemas de representación asociados se encuentran los enunciados verbales, las representaciones en tablas, las gráficas de tipo cartesiano o sagital, las representaciones pictóricas e icónicas, la instrucción (programación), la mecánica (poleas), las fórmulas y las expresiones analíticas.

Considerando que el significado y sentido acerca de la variación puede establecerse a partir de las situaciones problemas cuyos escenarios sean los referidos a fenómenos de cambio y variación de la vida práctica.

Entonces las preguntas tipo prueba SABER11 se deben resaltar aspectos importantes como:

- Los números que se usan y los procesos en contextos aritméticos, la aproximación numérica y la estimación que deben ser usados en la solución de los problemas.
- Enfrentar a los estudiantes con la construcción de expresiones algebraicas o construcción de las fórmulas.
- El reconocimiento y descripción de regularidades o patrones que incluyen escenarios en la vida práctica como representaciones pictóricas e icónicas así como escenarios geométricos o numéricos presentes en las transformaciones.
- Las tablas se pueden usar para llevar a los estudiantes a la gráfica de situaciones tipo problema de forma concreta, identificar la variable independiente y la dependiente es más significativo cuando se inicia desde esta representación.

Las gráficas de plano cartesiano también pueden ser introducidas inicialmente en el currículo ya que hacen posible el estudio dinámico de la variación. La relación entre las variables que determinan una gráfica puede ser comenzada con situaciones de tipo
cualitativo y con la identificación de nombres para los ejes coordenados. (Lineamientos Curriculares. Matemáticas, 1998, p. 50.)

Se considera en los lineamientos, que la introducción de la función en los aspectos descritos les da a los estudiantes fortalezas para comprender la naturaleza diferente de los conjuntos en que se le define, así como a la relación que se establece entre ellos.

Es necesario mostrar situaciones donde la función no presente una regularidad, con el fin de quitar la idea de que está determinada por la existencia de la expresión algebraica. A la manera de conceptualizar la función y los objetos asociados a ella como dominio, rango, etc., le sigue el estudio de modelos elementales, como la función lineal, afín, cuadrática, exponencial, logarítmica, dando prioridad en estos el estudio de los patrones que los caracterizan (tipo crecientes y decrecientes)

2.5.2 Estándares de competencias (Desde los procesos matemáticos)

El estudio de la variación tiene como una base fundamental acceder a los procesos de generalización propios de cada uno de los pensamientos matemáticos y esto se logra con la siguiente secuencia:

Procesos generales → Conceptos y procedimientos matemáticos → Contextos

En este sentido, el estudio de las propiedades de los números, sus operaciones y de la manera cómo varían sus resultados con el cambio de los argumentos y de los objetos de la geometría con sus características, se proponen como procesos de abstracción y generalización. La manera cómo cambian las medidas de las cantidades asociadas con las transformaciones de esos objetos Muchos de los conceptos de la aritmética y la geometría se suelen presentar en forma estática, pero ganarían mucho en flexibilidad, generalidad y atraerían más el interés de los estudiantes si se presentan en forma dinámica.

En relación con la competencia en comunicación y representación significa explorar la capacidad del estudiante para establecer relaciones entre materiales físicos e ideas
matemáticas, expresar conceptos matemáticos utilizando ilustraciones y para traducir del lenguaje natural al lenguaje simbólico; abordaron, además, aspectos tales como la descripción cualitativa y cuantitativa de fenómenos de variación presentados en diferentes contextos mediante diversas representaciones (reglas verbales, tablas, gráficas, simbólicas).

En lo referente a la competencia en razonamiento y argumentación significa explorar por la capacidad del estudiante para dar cuenta del cómo y del porqué de las estrategias o procedimientos puestos en acción para llegar a conclusiones. Se indaga también por aspectos tales como la capacidad para generalizar propiedades y relaciones, reconocer patrones y expresarlos matemáticamente.

En cuanto a la modelación, planteamiento y resolución de problemas significa el diseño y aplicación de diversas estrategias del estudiante para dar solución a problemas planteados en contextos dentro y fuera de la matemática, la verificación e interpretación de resultados de acuerdo con las condiciones iniciales del problema y la generalización de soluciones.

Uno de los propósitos al preservar la variación construir distintas formas de acercamientos significativos para la comprensión, uso de los conceptos y procedimientos de las funciones, sus sistemas analíticos con sentido del cálculo numérico, algebraico cumpliendo un papel importante en la resolución de problemas que se basan en la modelación de procesos de la vida cotidiana, las ciencias naturales, sociales económicas.

Se desarrolla así entonces una cercana relación con los otros tipos de pensamiento matemático (el numérico, el espacial, el de medida o métrico y el aleatorio o probabilístico) y con otros tipos de pensamiento más propios de otras ciencias, en especial a través del proceso de modelación de procesos.

Básicamente la relación con otros pensamientos aparece muchas veces, porque la variación y el cambio, aunque se representan generalmente por medio de sistemas algebraicos y analíticos, necesitan de conceptos, procedimientos que se relacionan con distintos sistemas numéricos específicamente el sistema de los números reales, fundamentales en la
construcción de las funciones de variable real, sistemas geométricos, de medidas, de datos y porque todos estos sistemas a su vez, pueden darse de manera estática o dinámica.

Los lineamientos curriculares permiten interpretar una nueva manera de organizar todos aquellos contenidos que se han constituido en los desarrollos curriculares para el área matemática llamados álgebra. Por lo tanto es importante acercarse a la comprensión y evaluación de la variación al interior de los sistemas algebraicos y analíticos. (Ministerio de Educación Nacional, (1998) lineamientos curriculares.)

Sólo así se podrá continuar comprendiendo el porqué de la necesidad de una propuesta que mejore los desempeños de los estudiantes en lo relativo al álgebra escolar al presentar objetos de índole matemático en un curso en el cual las situaciones de cambio sean preponderantes en la actividad matemática.

Así el desarrollo de pensamiento algebraico deja de ser exclusivo de los grados octavo y noveno, así se debe movilizar a lo largo de todo el ciclo escolar, desde preescolar hasta el grado undécimo, para fortalecer desde temprano la identificación y resolución de situaciones correspondientes.
El siguiente esquema muestra en forma sintética un posible principio organizador:

![Diagrama de pensamiento variacional](image)

En el anterior esquema la variación se articula en función del teorema fundamental del algebra que se relaciona con el pensamiento numérico y la medición. Inicialmente el alumno, ante una situación problema, debe basar su atención en una parte de la información del problema, es decir, solo considera una variable a la vez, y por lo tanto, su análisis de la situación es parcial.

En segundo lugar, debe identificar las variables del problema, y su correlación, pero esta establece cualitativamente, de tal forma que ambientes que involucren tratamientos con números quedan por fuera del alcance de las posibles soluciones. Este tipo de análisis son importantes pues dan herramientas de manejo sobre los procesos cuantitativos propios inmediatamente después desde el reconocimiento de las ecuaciones e inecuaciones.
En tercer lugar, se caracteriza el uso de estrategias que se centren en el reconocimiento de patrones de correlación entre las cantidades, pero desde una perspectiva aditiva, más que multiplicativa, utilizando reglas que permiten comparar, incrementar, decrementar o hacer relaciones desde un todo y también el tipo de representaciones y sus registros.

En cuarto lugar, se reconocen estructuras y relaciones que coordinan la variación de dos cantidades, fundamentalmente a partir de estrategias de reconocimiento de coordinación de regularidades crecientes y decrecientes.

Por último, se fundamenta en la comprensión de la relación de proporcionalidad propiamente dicha a partir del establecimiento de la constante de proporcionalidad como una razón que relaciona cualquier par de valores correspondientes a cada uno de las cantidades que se comparan.

La perspectiva de construcción de modelos matemáticos que den cuenta de fenómenos tanto del mundo real como de las matemáticas, se puede entender como un proceso que permite dinamizar la construcción de elementos propios del álgebra, a partir del desarrollo de la formulación y la validación.

De esta manera queda descrito como la variación se puede movilizar desde los tres ejes conceptuales patrones y regularidades, procesos algebraicos y análisis de funciones los cuales permiten variadas relaciones entre las distintas formas de promover procesos de variación.

2.5.3 Coherencia vertical

La complejidad conceptual y la gradualidad del aprendizaje de las matemáticas exigen en los estándares una alta coherencia tanto vertical como horizontal. La coherencia vertical está dada por la relación de un estándar con los demás estándares del mismo pensamiento en los otros conjuntos de grados. La coherencia horizontal está dada por la relación que tiene un estándar determinado con los estándares de los demás pensamientos dentro del mismo conjunto de grados.
Grado Sexto: Conjuntos, relación de contienencia y operaciones entre conjuntos (unión, intersección y producto cartesiano).

Grado Séptimo: Razones, proporción directa, proporción inversa, regla de tres simple y compuesta.

Grado Octavo: Expresiones algebraicas, monomios, operaciones entre monomios, polinomios, operaciones entre polinomios, factorización de polinomios, fracciones algebraicas, operaciones entre fracciones algebraicas, ecuaciones, identidad algebraica, solución de ecuaciones de primer grado en una variable, inecuaciones de primer grado en una variable, solución de inecuaciones de primer grado en una variable, ecuación de ecuaciones de primer grado en dos variables e inecuaciones lineales en dos variables.

Grado Noveno: Relación como subconjunto del producto cartesiano, dominio y rango de una relación, función como tipo especial de relación, funciones reales, función lineal, recta en el plano cartesiano, función cuadrática, ecuación cuadrática, números complejos, función exponencial, función logarítmica y ecuaciones logarítmicas.

Grado Décimo: funciones trigonométricas, identidades y ecuaciones trigonométricas.

Grado Undécimo: función real, dominio y rango de una función, operaciones entre funciones (suma, diferencia, producto, cociente, composición, inversión), límite de una sucesión y de una función, propiedades del límite de una función, sucesiones divergentes y convergentes, función continua, derivada como razón de cambio o como pendiente, e integral indefinida, integral definida.
2.6 Metodología propuesta

Se recopilan algunos cuestionarios liberados por el ICFES, desde el año 2003 hasta el 2010, para realizar un análisis de verificación de los elementos y características del pensamiento variacional.

Este trabajo de grado se desarrolló en tres momentos, cada uno de estos responde a necesidades específicas de la problemática abordada y permitieron la distribución secuencial de las acciones propuestas; la figura 2 hace una presentación esquemática de las mismas.

En la Fase 1, primero se recopila la información teórica necesaria desde algunos autores que tratan el tema para determinar las características y elementos del pensamiento involucrando el referente de los lineamientos curriculares, estándares, perspectiva evaluativa y la naturaleza de la prueba SABER 11 desde sus inicios hasta la actualidad.

En la Fase 2, se realiza la selección de las preguntas de diversos cuestionarios liberados por el ICFES a través de modo tangible que han sido publicados en Internet, haciendo su...

Figura 2. Metodología para implementar en la concordancia de las preguntas.
descripción correspondiente según el tópico o tipo de pregunta procediendo después a comparar y clasificar en una rejilla según elementos y características de la variación.

En la Fase 3, se analizan los resultados obtenidos al verificar cada pregunta clasificando en su correspondiente elemento y característica pasando a las conclusiones del documento y posteriores reflexiones a otros educadores en matemática.

3. **ANÁLISIS DE ALGUNAS PREGUNTAS EN BASE A ELEMENTOS Y CARACTERÍSTICAS DEL PENSAMIENTO VARIACIONAL.**

En este capítulo se presenta la selección y análisis de algunas preguntas extraídas de las pruebasSABER 11 efectuadas entre los años 2003 y 2010, se hace una descripción paulatina para cada una de ellas de la información con la que están relacionadas: aspectos de los estándares como son el significado del número y sus diferentes usos, la estructura del sistema de numeración, el uso de las operaciones, la comprensión de sus propiedades y las relaciones entre ellas, el reconocimiento de regularidades y patrones, la identificación de variables, la descripción de fenómenos de cambio y dependencia, la variación en contextos aritméticos, geométricos y el concepto de función. Para a partir de estos elementos mostrar a qué hacen referencia cada una estas preguntas, en términos de las características y elementos del pensamiento variacional, ya que dichos aspectos son utilizados como criterio de análisis; se incluye también una descripción de la posible solución.

3.1 **Ítems seleccionados**

En esta parte se presenta la selección realizada de algunos ítems, que están relacionados con el pensamiento variacional, de cuestionarios liberados por el ICFES a través de modo físico o en Internet durante varios años desde el año 2003 hasta el 2011, se hace su respectiva asociación a las características o elementos y después se plantea la solución con una sugerencia de cómo deberían abordarla con la información suministrada.
<table>
<thead>
<tr>
<th>Ítem</th>
<th>Año</th>
<th>Competencia</th>
<th>Tema</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2003</td>
<td>Argumentativa</td>
<td>Patrón de esferas</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>2</td>
<td>2004</td>
<td>Propositiva</td>
<td>Jabones diluidos</td>
<td>Tabla ilustrativa</td>
</tr>
<tr>
<td>3</td>
<td>2004</td>
<td>Argumentativa</td>
<td>Promoción de almacén</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>4</td>
<td>2004</td>
<td>Propositiva</td>
<td>Moldes de señalización</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>5</td>
<td>2005</td>
<td>Propositiva</td>
<td>Cajas de tamaños</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>6</td>
<td>2005</td>
<td>Propositiva</td>
<td>Función de molino</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>7</td>
<td>2005</td>
<td>Interpretativa</td>
<td>Planes envió de</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mercancías</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2005</td>
<td>Interpretativa</td>
<td>Dinero invertido</td>
<td>Tabla ilustrativa</td>
</tr>
<tr>
<td>9</td>
<td>2006</td>
<td>Interpretativa</td>
<td>Rutas entre ciudades</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>10</td>
<td>2006</td>
<td>Interpretativa</td>
<td>Caída de un objeto</td>
<td>Con ecuación ilustrativa</td>
</tr>
<tr>
<td>11</td>
<td>2006</td>
<td>Interpretativa</td>
<td>Construir espejos</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>12</td>
<td>2006</td>
<td>Propositiva</td>
<td>Piezas industriales</td>
<td>Con figura ilustrativa</td>
</tr>
<tr>
<td>13</td>
<td>2006</td>
<td>Interpretativa</td>
<td>Estudio de mercadeo</td>
<td>Tabla ilustrativa</td>
</tr>
<tr>
<td>14</td>
<td>2006</td>
<td>Propositiva</td>
<td>Estudio de productos</td>
<td>Tabla ilustrativa</td>
</tr>
<tr>
<td>15</td>
<td>2006</td>
<td>Propositiva</td>
<td>Almacén de camisetas</td>
<td>Con ecuación ilustrativa</td>
</tr>
<tr>
<td>16</td>
<td>2008</td>
<td>Argumentativa</td>
<td>Cuadrados de fichas</td>
<td>Tabla ilustrativa</td>
</tr>
<tr>
<td>17</td>
<td>2008</td>
<td>Argumentativa</td>
<td>Empresa de vinos</td>
<td>Tabla ilustrativa</td>
</tr>
<tr>
<td>18</td>
<td>2010</td>
<td>Interpretativa</td>
<td>Habitantes de la tierra</td>
<td>Con función exponencial</td>
</tr>
</tbody>
</table>

Tabla 5. Presentación de cada uno de los ítems seleccionados para el trabajo

3.2 Rejilla de clasificación para los ítems seleccionados

La siguiente es la rejilla en la cual se clasifican las preguntas de acuerdo al tipo de elementos y características que posea cada una. Se ha organizado en 3 filas y 3 columnas, cada una de estas corresponde a:

Las columnas: Elementos del pensamiento variacional

Las filas: Características del pensamiento variacional
El cruce de estas filas y columnas permite tener 9 celdas en las que las características presentadas se cruzan, cabe aclarar que la ubicación de ítem en alguna de las celdas puede resultar complejo dado que puede tener varias opciones de relación con las condiciones dadas en las filas (o en las columnas) en ese caso se procede priorizando aquellas características que se consideren más relevantes. Cada una de estas celdas se nombra con las letras A, B,… hasta I. Esto con el fin de agilizar las referencias en los análisis posteriores.

<table>
<thead>
<tr>
<th>Características del pensamiento variacional</th>
<th>Elementos del pensamiento variacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las cantidades variables y constantes y su dependencia</td>
<td>Generación de los datos a consignar en una tabla e intervalos de variación de las variables</td>
</tr>
<tr>
<td>Patrones y Regularidades</td>
<td>Patrones y Regularidades</td>
</tr>
<tr>
<td>Item 5</td>
<td>Item 6</td>
</tr>
<tr>
<td>Item 8</td>
<td>Item 15</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Procesos algebraicos</td>
<td>Procesos algebraicos</td>
</tr>
<tr>
<td>Item 4</td>
<td>Item 2</td>
</tr>
<tr>
<td>Item 10</td>
<td>Item 17</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Análisis de funciones</td>
<td>Análisis de funciones</td>
</tr>
<tr>
<td>Item 3</td>
<td>Item 2</td>
</tr>
<tr>
<td>Item 10</td>
<td>Item 14</td>
</tr>
<tr>
<td>Item 13</td>
<td>Item 15</td>
</tr>
<tr>
<td>Item 18</td>
<td>Item 15</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
</tbody>
</table>

Tabla 6. Rejilla comparativa de los ítems seleccionados
Ítem # 1. Prueba saber año 2003.

Se realizaron unas pruebas con esferas de un metal experimental. Se descubrió que si se deja caer a una determinada altura una esfera de volumen V se divide en dos esferas de volumen $V/2$ y luego estas esferas, al caer desde la misma altura, se dividen en cuatro esferas de volumen $V/4$ y así sucesivamente. A continuación se muestra un dibujo que representa la prueba planteada.

![Diagrama](image)

Figura 3. Pregunta prueba Saber-2003

1. Con base en la variación o aumento de esferas por escalón se puede afirmar que:
 A. Se tendrá el doble de esferas de un escalón a otro
 B. El número de esferas de un escalón se representa por medio de una potencia de uno
 C. Escalón 0 al 1, al 2, al 3 al 4,… aumenta 2, 4, 8, 16,… esferas respectivamente
 D. El escalón 0 al 1, 1 al 2, 2 al 3, 3 al 4 aumentan 1, 2, 4, 8,… esferas respectivamente.

La pregunta explora por la capacidad del estudiante en interpretar y usar diferentes tipo de representación, estando asociada con estándares referidos al planteamiento y solución de situaciones utilizando argumentos que justifiquen relaciones entre información numérica.
Para dar solución a la pregunta el estudiante debe reconocer el patrón establecido en cada escalón que depende del valor de la ecuación 2^n desde $n=0$

$2^0, 2^1, 2^2, 2^3 \ldots$

La solución del ítem sería la opción C. En la rejilla se clasifica esta pregunta en **Cuadrículas en rejilla B** como la que compete a los patrones y regularidades al observar la información de cada escalón se puede establecer al plantear la solución con base 2 y además esta se puede organizar como datos en una tabla para visualizar mejor su solución. Es la primera característica y elemento seleccionado como ejercicio inicial.

Ítem # 2 Prueba saber año 2004

En una fábrica de jabones en barra, miden la calidad de sus propios productos atendiendo a la cantidad promedio de jabón que se disuelve en una hora (1h). Se considera de mayor calidad el jabón que muestre más resistencia al agua. La fábrica ofrece 3 calidades que se distinguen por los colores blanco rosado y verde. La información correspondiente a cada uno se muestra en el cuadro

<table>
<thead>
<tr>
<th>Color</th>
<th>Cantidad de jabón que en agua se disuelve en 1 h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanco (b)</td>
<td>1/2 cm3</td>
</tr>
<tr>
<td>Rosado (r)</td>
<td>3/4 cm3</td>
</tr>
<tr>
<td>Verde (v)</td>
<td>2/3 cm3</td>
</tr>
</tbody>
</table>

40. El jefe de producción ha informado a los empleados que a partir de ahora se fabricarán jabones con capacidad de resistir el mismo tiempo sumergido en agua, no importando el color. A raíz de esto los trabajadores encargados de la elaboración de los empaques, están buscando una forma de determinar el volumen (V) de cada jabón dependiendo del tiempo
(t) que requiere el jabón (b) para diluirse. Para facilitar esta labor, es conveniente usar las expresiones.

\[
\begin{align*}
V_v &= \frac{3}{2} - \frac{t}{12} \\
V_r &= \frac{3}{2} - \frac{t}{2} \\
A. & \quad V_v = \frac{3}{2} - \frac{t}{12} \\
& \quad V_r = \frac{3}{2} - \frac{t}{2}
\end{align*}
\]

\[
\begin{align*}
V_v &= \frac{3}{2} + \frac{V_b}{6} \\
V_r &= V_b + \frac{1}{2} V_b \\
B. & \quad V_v = \frac{3}{2} + \frac{V_b}{6} \\
& \quad V_r = V_b + \frac{1}{2} V_b
\end{align*}
\]

\[
\begin{align*}
V_v &= \frac{3}{2} + 2V_b \\
V_r &= V_b + \frac{1}{3} V_b \\
C. & \quad V_v = \frac{3}{2} + 2V_b \\
& \quad V_r = V_b + \frac{1}{3} V_b
\end{align*}
\]

Figura 4. Pregunta prueba SABER 11-2004

La característica en esta pregunta incluye los procesos algebraicos desde los contextos de variación y cambio hacen referencia a la forma de ver las expresiones algebraicas desde las diversas situaciones que posibilitan expresar una generalidad.

Para dar solución a la pregunta el estudiante debe proponer como los volúmenes de los jabones rosado y verde varían con el volumen del jabón b que es el blanco.

El volumen del jabón rosado sería igual a 3/2 Vb y del jabón verde sería 4/3 Vb, cuando el blanco se disuelve totalmente en 2 horas el rosado ya se ha disuelto totalmente y otra mitad, para el verde sería un jabón completo disuelto y la tercera parte. La solución del ítem sería la opción D.

En la rejilla se clasifica esta pregunta en **cuadriculas en rejilla E-H** que compete a los procesos algebraicos por las ecuaciones que se dan en el mismo y por ende una función lineal, además están consignados los datos en la tabla inicial que me permite clasificarlo en ese elemento como tal.
Ítem # 3 prueba saber año 2004 cuadriculas en rejilla G-I

Las siguientes gráficas ilustran dos promociones que ofrece el almacén, dependiendo de la forma de pago por compra de artículos

![Gráficas de promociones](image)

Figura 5. Pregunta prueba SABER 11-2004

54. Uno de los dueños del almacén afirma pagar con tarjeta platino o con efectivo beneficia de igual manera a los clientes. Esta afirmación es:

A. Verdadera, porque en ambos casos si el costo total de la compra $25.000, el cliente pagaría $20.000
B. Falsa, por que conviene pagar más en efectivo, ya que el cliente al hacer la compra por $20.000, pagaría solo $15.000, mientras que con la tarjeta desembolsaría $16.000
C. Verdadera, porque cualquiera que sea el monto de la compra, él puede escoger el monto de la compra, él puede escoger pagar en efectivo o con tarjeta platino
D. Falsa, porque si la compra es menor de $25.000 ahorraría más si paga en efectivo, de lo contrario es mejor utilizar la tarjeta para que el descuento sea mayor.

En este ítem un estudiante necesitaría identificar en esas tablas presentadas, la información requerida para poder así identificar según los valores entre costos y las promociones en los cuales, por ejemplo, al comprar con $15000 paga $12000 con tarjeta platino y paga $10000 en efectivo le conviene más pero al comprar con $30000 paga $24000 con tarjeta platino que le conviene más y $25000 en efectivo, el referente es desde $25000, por lo tanto la solución del ítem sería la opción D.
En la rejilla se clasifica esta pregunta que concierne según a la característica de una función lineal e interpretación de la gráfica entregada por la pregunta, así mismo las variables en juego son el costo a pagar de acuerdo al tipo de pago efectuado lo que me clasifica el ítem en el elemento de las cantidades variables.

Ítem # 4 prueba saber año 2004

Para la señalización de las diferentes vías de transporte, se recorta de láminas de aluminio de varios tamaños y formas, dos tipos de moldes, con las siguientes características:

![Molde tipo I y Molde tipo II](image)

Figura 6. Pregunta prueba SABER 11-2004

56. Con el fin de disminuir la accidentalidad en cierto tramo de carretera, se estudian dos propuestas para hacer más visibles las señales:

1. Colocar una banda fluorescente alrededor de cada molde
2. Pintar cada molde con pintura fluorescente

Dado que las dos propuestas son igualmente beneficiosas para el fin propuesto. Se debe tomar en cuenta la decisión más económica posible, sabiendo que cada centímetro de material usado en la propuesta 1 tiene el mismo costo que cada centímetro cuadrado de molde pintado. La decisión que debe tomarse es:

A. Escoger la propuesta 1 si \(x < 4 \) cm, la propuesta 2 si \(x > 4 \) cm y cualquiera de las dos si \(x = 4 \)
B. Escoger la propuesta 1 si \(x > 4 \) cm, en cualquier otro caso resulta más beneficiosa la propuesta 2.
C. Escoger la propuesta 1 si \(x > 4 \), la propuesta 2 si \(x < 4 \) cm, y cualquiera de las dos si \(x = 4 \) cm.
D. Escoger la propuesta 1 si \(x < 4 \) cm, en cualquier otro caso resulta más beneficiosa la propuesta 2
El ítem exige dar significado a la variable y requiere realizar una traducción del lenguaje natural al simbólico formal, desarrollar y aplicar diferentes estrategias para la solución del problema. Para dar solución a la pregunta el estudiante debe indagar y reconocer que la propuesta tipo 1 sería el valor del perímetro del círculo $2\pi \cdot \left(\frac{x}{2}\right)$ y la propuesta tipo 2 el área del cuadrado $(x)^2$. La solución del ítem sería la opción C.

En la rejilla se clasifica esta pregunta en cuadriculas en rejilla D que concierne a la característica procesos algebraicos y elemento de las cantidades variables como lo son en este caso el área y perímetro de los moldes en cada propuesta planteada.

Ítem # 5 prueba saber año 2005

23. En una fábrica se emplean cajas de diez tamaños para empacar los productos. En cajas más pequeñas (tamaño 1) se empacan 3 productos y en cada uno de los demás (tamaño 2 a tamaño 10) se empacan 3 cajas del tamaño inmediatamente anterior.

Si la persona encargada de la bodega debe informar al jefe de producción la cantidad de productos empacados que hay en una caja de cualquier tamaño. Una fuente mediante la cual se puede obtener este dato sin tener que destapar la caja es:

A. Determinar la cantidad de cajas tamaño 1 empacadas dentro de otra más grande mediante la formula $3n-1$, donde n es el número de tamaño de dicha caja, y luego sumar todos los valores obtenidos.

B. Utilizar la formula $3m$, donde m, donde m representa el número del tamaño de la caja.

C. Utilizar la formula $3m$, donde m, donde m representa el número del tamaño de la caja.
D. Determinar la cantidad de cajas tamaño 1 empacadas dentro de otra más grande mediante la fórmula $3n-1$, donde n es el número del tamaño de esta caja, luego multiplicar por 3 los valores obtenidos y sumarlos.

El ítem indaga por la identificación de las variables del problema en un contexto, requiere realizar una traducción del lenguaje natural al simbólico formal, desarrollar y aplicar diferentes estrategias para la solución del problema.

Para dar solución a la pregunta el estudiante debe proponer que para determinar la cantidad de cajas tamaño 1 empacadas dentro de otra más grande mediante la fórmula general o patrón que nos va dando la cantidad de cajas, donde n es el número del tamaño de esta caja, luego multiplicar por 3 porque cada una tiene 3 productos y al final con los valores obtenidos sumarlos para establecer el total de los productos. La solución del ítem sería la opción D.

En la rejilla se clasifica esta pregunta en cuadriculas en rejilla A en la que se va estableciendo la característica de un patrón o regularidad de acuerdo a la información suministrada y por ende el elemento de las cantidades variables como el número de productos empacados, que dependen del tamaño de las cajas y el valor constante de 3 por ser las cajas de tamaño anterior que se empacan.

Ítem # 6 prueba saber año 2005

El siguiente dibujo, representa el sistema que tiene un pequeño pueblo para sacar agua del río
Para reforzar la estructura del molino se van a colocar varillas en forma de perpendicular, desde el punto donde se une cada balde con el molino hasta el eje principal. A la persona encargada de cortar las varillas hay que entregarle la longitud de cada una de ellas, la gráfica que representa estas longitudes es:

![Gráficas](image)

Figura 7. Pregunta prueba Saber-2005

Esta pregunta está relacionada con el análisis de representaciones gráficas cartesionas de los comportamientos de cambio de la variable longitud. Esta referida a la capacidad del estudiante para representar y modelar usando lenguaje gráfico.

Para dar solución a la pregunta el estudiante debe tener en cuenta que se genera una función periódica y las distancias son perpendiculares desde el eje principal hasta cada punto del balde. La solución del ítem sería la opción D.

En la rejilla se clasifica esta pregunta en **cuadrículas en rejilla** en la que se visualiza de alguna manera a través de la interpretación de una gráfica el tipo de función y como la longitud de cada varilla depende de la ubicación de cada balde con respecto al eje principal.

Ítem # 7 prueba saber año 2005

Para el envío de mercancía vía aérea a las diferentes ciudades del país, la empresa “SERVI-ENVIA”, ofrece a sus clientes dos planes diferentes según el peso y el destino al que se dirija nuestra mercancía:
PLAN I. Solo para envío de mercancías con peso igual o mayor a 40 kilos

- Para cualquier envío, la empresa llevará gratis 20 kilos del envío
- Para enviar a una distancia menor o igual a 90 km, el costo de cada kilo será de $1800
- Para envíos la una distancia mayor de 90 km, el costo de cada kilo se incrementará un 25%

PLAN II.

- Parta envíos a una distancia menor de 90 km, cada kilo en mercancía tendrá un costo de $1200
- Para envíos a una distancia menor de 90 km, el costo de cada kilo se incrementará en un 35%

Como apoyo para que los clientes tomen la decisión de cual plan escoger para enviar la mercancía, la empresa dispuso la siguiente gráfica, en la que se relacionan el peso de la mercancía que se quiere enviar a una distancia menor de 90 km, con los planes que se ofrecen

![Gráfica de costos](image)

Figura 8. Pregunta prueba Saber-2005

De esta gráfica los clientes pueden concluir que:

A. Enviar mercancía con un peso entre 40 o 60 kilos con el plan II, representa el ahorro del 50% del dinero
B. Enviar mercancía con un peso mayor de 40 kilos con el plan I, representa SIEMPRE un ahorro de dinero

C. Enviar mercancía con un peso menor de 60 kilos con el plan II, resultará SIEMPRE más económico que enviarlas con el otro plan

D. Enviar mercancías con un peso de 60 kilos, tendrá el mismo costo eligiendo cualquiera de los dos planes.

Esta pregunta está relacionada con el análisis de representaciones gráficas. Esta referida a la capacidad del estudiante para representar y modelar usando lenguaje gráfico.

Para dar solución a la pregunta el estudiante debe observar que para los dos planes al observar que ambas líneas rectas tienen un punto en común que es en 60 kg y significa que tienen el mismo costo en ese caso, antes de ese valor es más costoso el plan II y después de ese valor es más costoso el plan I.

La solución del ítem sería la opción D.

En la rejilla se asocia esta pregunta en cuadriculas en rejilla A- I con la característica análisis de funciones tipo lineales provenientes de la información suministrada y como elemento preponderante la interpretación de esa gráfica así como la dependencia del costo de la mercancía de acuerdo al peso de ellas y las distancias en los dos planes propuestos.

Ítem # 8 prueba saber año 2005

Camilo ganó $1.600.000 en una rifa y no ha decidido si gastar ese dinero o invertirlo en una entidad financiera que paga el 10% de interés anual sobre el dinero que tenga invertido.

Si Camilo decide guardar el dinero en su casa y gastar cada semana la mitad de lo que le queda. La expresión que representa el dinero que le queda al finalizar la séptima semana es:

A. \(\frac{1}{2} \times 1.600.000\)
B. \(\frac{1}{2} \times 1.600.000 \times 7\)
C. \(\frac{1}{2^6} \times 1.600.000\)
D. \(\frac{1}{2^7} \times 1.600.000\)

49
El ítem indaga por el uso de los números reales en sus diferentes representaciones y en diversos contextos. Además requiere realizar una traducción del lenguaje natural al simbólico formal, desarrollar y aplicar diferentes estrategias para la solución del problema.

La característica en esta pregunta incluye los contextos de variación y cambio hacen referencia a la forma de ver las expresiones desde las diversas situaciones que posibilitan expresar la generalización.

Para dar solución a la pregunta el estudiante debe tener en cuenta la generalidad que se va dando cuando va realizando la resta de la mitad de la mitad $16000000 - 1600000/2^1 - 16000000/2^2 - 16000000/2^3 - 16000000/2^4 - 16000000/2^5 - 16000000/2^6 - 16000000/2^7$.

La solución del ítem seria la opción D

En la rejilla se asocia esta pregunta en cuadriculas en rejilla A con la característica patrones y regularidades en este caso del valor inicial de 1600000 sobre la mitad elevado el número de semanas transcurridas y por ende como el dinero que queda al finalizar la última semana depende de lo que gasta cada semana como tal.
Ítem # 9 prueba saber año 2006

RUTA BOGOTÁ CUCUTA

El siguiente gráfico muestra una ruta para ir desde Bogotá hasta Cúcuta via terrestre, en el gráfico aparece información sobre: Distancia, temperatura y altura

![Gráfico de ruta Bogotá Cúcuta](image)

Figura 9. Pregunta prueba Saber 2006

Si un automóvil se desplaza a una velocidad constante durante todo el trayecto (Bogotá-Cúcuta), el tramo en el cual la rapidez de variación de la altura mayor es:

A. Tunja – Arcabuco
B. San Gil – Aratoca
C. Pamplona – El Diamante
D. Pescadero - Bucaramanga

El ítem explora por la capacidad para interpretar y usar diferentes tipos de representación. La solución consiste en identificar en el gráfico presentando la información referida a diferentes ciudades en la ruta Bogotá - Cúcuta respecto a su distancia en kilómetros de Bogotá, su altura sobre el nivel del mar en metros y su temperatura en grados Celsius.

Se debe interpretar esta información y establecer que la altura sobre el nivel del mar y la temperatura se relacionan de manera inversa para después buscar la ciudad de la gráfica
más específicamente en las presentadas de las opciones la ciudad que cumple simultáneamente las condiciones. La solución del ítem sería la opción C.

En la rejilla se relaciona esta pregunta en cuadriculas en rejilla A- I con la característica implícita de una función de alguna manera que es la rapidez de variación de la altura a la que estén situadas las localidades ó municipios, también se puede clasificar en cantidades variables relacionadas estas características con el elemento de la gráfica dada por la pregunta como tal que según la pendiente proporciona la información para la respuesta.

Ítem # 10 prueba saber año 2006

Caída de un objeto

Si un objeto con masa m se deja caer, y se tiene en cuenta la resistencia del aire, una función que describe la velocidad V del objeto después de t segundos es:

\[v = \frac{mg}{c} \left(1 - e^{-\frac{ct}{m}} \right) \]

Donde g es la aceleración de la gravedad y c y e son las constantes positivas

A medida que transcurre el tiempo, la velocidad del objeto:

A. Permanece constante
B. Disminuye y se aproxima a cero
C. Disminuye y se aproxima a \(\frac{mg}{c} \)
D. Aumenta y se aproxima a \(\frac{mg}{c} \)
Este ítem explora aspectos referidos a la modelación de situaciones de variación con funciones exponenciales y al uso de técnicas de aproximación en procesos infinitos numéricos. Está relacionado además con la capacidad del estudiante para interpretar y usar diferentes tipos de lenguaje, describir relaciones y manipular expresiones simbólicas.

Para dar solución a la pregunta el estudiante debe tomar la expresión y analizar tendencias como: $v = \frac{mg}{c} \left(1 - e^{-ct}\right)$ cuando t crece hasta el infinito e^{-ct} tiene a 0 y $\left(1 - e^{-ct}\right)$ tiende a 1, de donde $v = \frac{mg}{c} \left(1 - e^{-ct}\right)$ crece y se aproxima a $\frac{mg}{c}$, es decir la última opción.

La solución del ítem sería la opción D

En la rejilla se relaciona esta pregunta en cuadrículas en rejilla G con la característica que por supuesto es una función exponencial la cual existen cantidades constantes y variables relacionadas sobre todo para interpretación de la pregunta la velocidad dependiente del tiempo.

Ítem # 11 prueba saber año 2006

Construir Espejos

Para construir espejos en vidrio, una empresa diseña espejos tipo A de forma de hexágono regular, obtenidas del mayor tamaño posible a partir de láminas circulares de vidrio de 1 metro de radio. Cortando por la mitad las piezas tipo A, se obtienen piezas tipo B.

Figura 10.Pregunta prueba Saber-2006
Las piezas tipo A y B se venden a $17.000 y $10.000 respectivamente. La empresa vende 5 piezas y recibe un pago por valor total de $63.900. si se sabe que sobre esta compra se hizo un descuento del 10% sobre el precio total de la pieza. ¿Cuántas piezas se vendieron de cada tipo?

A. 2 del Tipo A y 3 del tipo B
B. 3 del tipo A y 2 del tipo B
C. 4 del tipo A y 1 del tipo B
D. 1 del tipo A y 4 del tipo B

La característica en esta pregunta incluye los procesos algebraicos desde los contextos de variación y cambio hacen referencia a la forma de ver las expresiones algebraicas desde las diversas situaciones que posibilitan expresar la generalización. Para dar solución a la pregunta el estudiante debe resolver el razonamiento de que si p es el precio sin el descuento se tiene entonces que p=63900/0.9, de donde p=71000. Si x es el número de piezas de tipo A, y es el número de piezas de tipo B, que en total son 5 piezas vendidas, es posible determinar A y B resolviendo el sistema de ecuaciones lineales

\[17000A+10000B=71000 \quad A+B=5\]

De donde A=3, B=2 La solución del ítem sería la opción B

En la rejilla se asocia esta pregunta en cuadriculas en rejilla D con los procesos algebraicos en los cuales el elemento identificado es el de cantidades variables como el tipo de piezas dependen del valor a la que se venden cada uno.

Ítem # 12 prueba saber año 2006

Las siguientes piezas no utilizadas en la industria de la ornamentación como piezas de seguridad. Se ha colocado x en las dimensiones de cada pieza, ya que pueden variar de acuerdo con las necesidades de los compradores.
Si la pieza 1 fuese hueca y se quisiera colocar piezas en su interior de la forma y dimensiones que se indica en la figura, la máxima cantidad de piezas que debe contener la pieza 1 es:

A. 9, porque en la base contiene 5, luego 3 y finalmente 1
B. 4, porque en la base contiene 3, luego 1
C. 9 porque en cada vértice hay 1, en cada lado hay 1 y en el interior hay 1
D. 4, porque en cada vértice hay 1 y en el centro hay 1

La característica en esta pregunta incluye los procesos algebraicos desde los contextos de variación y cambio hacen referencia a la forma de ver las expresiones algebraicas desde las diversas situaciones que posibilitan expresar la generalización.

El estudiante debe solo calcular el volumen de la pieza 1 que es un prisma y dividirlo sobre el volumen de la pieza dada para determinar la solución.

\[
\frac{(4x - 1) \times 3x \times 3x}{(4x - 1) \times x \times x}
\]

La solución del ítem sería la opción C.
En la rejilla se asocia esta pregunta en **cuadriculas en rejilla** además con los procesos algebraicos a plantear y resolver de acuerdo a los volúmenes de cada pieza a comparar y el elemento de la interpretación de la gráfica dada en ella como tal.

Ítem # 13 prueba saber año 2006

En una fábrica se realizó un estudio de mercadeo para analizar el precio de venta al público de un producto en función de las unidades que se distribuyen en el comercio, en dos ciudades diferentes. De dicho estudio se concluye que:

I. El precio del producto por ciudad 1 \((C_1)\), en miles de pesos está dado por
 \[C_1(U) = \frac{U}{6} + 5 \]

II. El precio del producto en la ciudad 2 \((C_2)\), en miles de pesos está dado por
 \[C_2(U) = \frac{U}{4} + 6 \]

\(U\) representa las unidades de mil del producto que se encuentra en el comercio en cada ciudad. La empresa distribuye máximo 12,000 unidades y no menos de 1,000 unidades en cada ciudad. En el siguiente gráfico se ilustra las relaciones \(C_1(U)\) y \(C_2(U)\).

![Gráfico de precios](image.png)

Figura 12. Pregunta prueba Saber-2006

Teniendo en cuenta el comportamiento de las relaciones en las ciudades \(C_1\) y \(C_2\), afirma que:
A. Cuando la fábrica distribuye a las dos ciudades 8,000 unidades del producto, los precios en estas ciudades son iguales.

B. Si se distribuye menos de 8,000 unidades en cada ciudad, el precio del producto en C_2, siempre será menor en comparación con la otra ciudad.

C. Cualquier que sean las unidades distribuidas en cada ciudad el precio del producto C_1, siempre será menor en comparación la otra ciudad.

D. Cuando la fábrica distribuye más de 8,000 unidades en cada ciudad, el precio del producto C_2, siempre será menor en comparación con la otra ciudad.

Esta pregunta está relacionada con análisis en representaciones gráficas cartesianas de los comportamientos de cambio de funciones y con la identificación de relaciones entre propiedades de las ecuaciones algebraicas y propiedades de las gráficas. Para dar solución a la pregunta el estudiante debe solo observar detenidamente que en la gráfica en el valor 8 el precio es de 4 para ambas ciudades. La solución del ítem sería la opción A.

En la rejilla se asocia esta pregunta en **cuadriculas en rejilla G-Icon** el análisis de las funciones de cada ciudad lineales y el elemento de los datos de la gráfica, que proporciona la pregunta del precio del producto que depende de las unidades distribuidas, que también me puede clasificar la pregunta en cantidades variables dependientes.

Ítem # 14 prueba saber año 2006

Una empresa ha hecho un estudio para determinar qué tan conocido es el producto que ofrece. Para este estudio realizaron encuestas dividiendo la población encuestada en tres grupos. Los grupos fueron los siguientes:

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Total de personas encuestadas</th>
<th>Cantidad de personas que conocen que existe el producto pero no lo usan</th>
<th>Cantidad de personas que conocen y usan el producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>200</td>
<td>110</td>
<td>70</td>
</tr>
<tr>
<td>II</td>
<td>500</td>
<td>250</td>
<td>220</td>
</tr>
<tr>
<td>III</td>
<td>150</td>
<td>120</td>
<td>20</td>
</tr>
</tbody>
</table>

Figura 13. Pregunta prueba Saber-2006
En la empresa se ha diseñado un plan para lograr que haya un aumento en el número de personas que usan el producto a partir de un aumento en el número de compradores. El plan garantiza que cada día se incrementará la cantidad de compradores en uno más que el día anterior a partir del primer día. Para ilustrar los efectos del plan, tomando como base los resultados del estudio, se ha construido la grafica.

En este ítem un estudiante necesitaría identificar en esas tablas presentadas, la información requerida para poder así identificar como está relacionada con análisis en representaciones gráficas cartesianas de los comportamientos de cambio de funciones y propiedades de las gráficas.

Para dar solución a la pregunta el estudiante debe solo tener en cuenta que según esas condiciones no es posible que sea una línea recta la gráfica y debe partir de que los días van en el eje horizontal y los compradores que usan el producto en el vertical aumentando uno más que el anterior comenzando en el valor 70+220+20=310. La solución del ítem sería la opción A.

En la rejilla se asocia esta pregunta en cuadriculas en rejilla H-Itambién con el análisis de funciones para el número de compradores de un producto que varía de acuerdo al número de días y como se incrementan según las condiciones planteadas, por ende se clasifica la pregunta dependiendo de los datos de la tabla proporcionados y también la interpretación de las gráficas.
Ítem # 15 prueba saber año 2006

Un almacén mayorista vende camisetas a $28500, cada una le cuesta al almacén $14.250, pero existe una promoción según la cual por la compra de más de cinco camisetas se puede llevar a mitad de precio las restantes. Pero sin llevar más de nueve camisetas.

El gerente pide al administrador del almacén que establezca una expresión para conocer el costo (C), de cualquier cantidad de camisetas (x), para cumplir con la solicitud el administrador le propone una expresión en la que la información que no puede faltar es

A. \[C(x) = 28500x \quad \text{con } x \in \mathbb{R} \quad 1 \leq x \leq 5 \]

B. \[C(x) = 142500 + 14250(x - 5) \quad \text{con } x \in \mathbb{N} \quad 5 \leq x \leq 14 \]

C. \[C(x) = 270750 + 28500(x - 14) \quad \text{con } x \in \mathbb{N} \quad x > 14 \]

D. \[C(x) = 142500 + 270750x + 28500x \quad \text{con } x \in \mathbb{R} \quad x \geq 1 \]

La característica en esta pregunta incluye los procesos algebraicos desde los contextos de variación y cambio hacen referencia a la forma de ver las expresiones algebraicas desde las diversas situaciones que posibilitan expresar la generalización. Para dar solución a la pregunta el estudiante debe solo probar esa opción en cada ecuación o reconocer que por 6 camisetas, por ejemplo, el valor sería de las primeras cinco camisetas \(5 \times 28500 = 142500 + 142508(6-5) \) de la sexta camiseta y solo una cumple ese requisito o solicitud. La solución del ítem sería la opción B.
En la rejilla se asocia esta pregunta en **cuadriculas en rejilla** con la característica de los procesos algebraicos por las ecuaciones que proporciona y además las cantidades variables como el costo que depende de la cantidad de camisetas compradas y los precios fijos además con cierto número de camisetas.

Ítem # 16 prueba saber año 2008

En la tabla se proporciona información sobre una secuencia de cuadrados construidos con dos tipos de fichas blancas y negras:

<table>
<thead>
<tr>
<th>Número de cuadrado</th>
<th>Cantidad de fichas</th>
<th>Área total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blanças</td>
<td>Negras</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

14. De acuerdo con la información de la tabla, la cantidad de fichas blancas no puede ser 8, porque

A. todos los datos de esta columna tienen raíz cuadrada exacta, por ser el cuadrado de n, y 8 no cumple esta condición
B. si 8 fuese un dato de esta columna, 32 cm² debería ser dato de la columna a, lo cual no sucede porque 32 no tiene raíz cuadrada exacta
C. si 8 fuese un dato de esta columna, este número no estaría en la columna cantidad de fichas negras porque ningún dato es igual a otro
D. los datos de esta columna son el cociente entre el dato de la columna cantidad de fichas negras y n, así, para que 8 fuese dato de la columna cantidad de fichas blancas, en n = 2 la cantidad de fichas negras debería ser 16

La pregunta explora por la capacidad del estudiante en interpretar y usar diferentes tipo de representación, estando asociada con estándares referidos al planteamiento y solución de situaciones utilizando argumentos que justifiquen relaciones entre información numérica.

Para dar solución a la pregunta el estudiante debe solo reconocer la generalidad en la tabla dada que la columna de fichas blancas y el área total son valores con raíces cuadradas, el de
las blancas es el valor cuadrado de n y la columna de las fichas negras en el valor de las blancas multiplicadas por dos y el área que depende del cuadrado del doble del número n.

La solución del ítem sería la opción A.

En la rejilla se asocia esta pregunta en cuadriculas en rejilla B con la característica de los patrones y regularidades a través de los datos consignados en una tabla como se puede observar en las tres columnas siguientes al número de cuadrado n.

Ítem # 17 prueba saber año 2008

Con motivo de la temporada navideña, una empresa de licores lanzará al mercado los vinos Amoroso y Sensación, cuyas características principales son su exquisito sabor y su particular presentación al público, pues son envasados en botellas alargadas de 40 cm de longitud. Para invertir en la primera producción, el dueño cuenta con $20 000 000 y con el equipo necesario para procesar 2 600 000 cm³ de vino. En la siguiente tabla se indica los costos de producción y ganancias de cada vino.

<table>
<thead>
<tr>
<th></th>
<th>Vino Amoroso</th>
<th>Vino Sensación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de cada botella</td>
<td>1 000 cm³</td>
<td>1 920 cm³</td>
</tr>
<tr>
<td>Costo de producción por botella</td>
<td>$15 000</td>
<td>$19 600</td>
</tr>
<tr>
<td>Ganancia neta (botella)</td>
<td>$12 000</td>
<td>$7 400</td>
</tr>
</tbody>
</table>

36. Luego de hacer estimaciones, el jefe de producción le informa al gerente que la relación de costos que debe mantenerse en esta producción está representada por la expresión

\[15 000 A + 19 600 S \leq 20 000 000.\]

El gerente, al analizar lo anterior, le responde diciendo que está

A. de acuerdo, ya que esta expresión permite determinar cuántas botellas de cada vino deben producirse, para no superar los $20 000 000 de presupuesto
B. en desacuerdo, porque es necesario considerar la cantidad de vino Amoroso que se puede producir durante cada mes, para luego estimar la cantidad de vino Sensación producido durante ese período
C. de acuerdo, ya que esta expresión relaciona la inversión que hará la empresa, con posibles cantidades de botellas de cada vino, para no superar la inversión establecida
D. en desacuerdo, porque debe considerarse, además, la ganancia neta que se obtendrá con la venta de cada botella de vino de las dos marcas

El ítem indaga por el uso de los números reales en sus diferentes representaciones y en diversos contextos, exige dar significado a las variables. Además requiere realizar una
traducción del lenguaje natural al simbólico formal, desarrollar y aplicar diferentes estrategias para la solución del problema según la ecuación planteada en la condición.

Para dar solución a la pregunta el estudiante debe observar la desigualdad planteada y tener en cuenta que $15000 es el costo del vino Amoroso y $19600 el costo del vino Sensación deben unirse e igualar o no superar el valor de la inversión de $20 000 000. La solución del ítem sería la opción C.

En la rejilla se asocia esta pregunta en **cuadriculas en rejilla D-E** con la característica de los procesos algebraicos ó desigualdades en este caso que se proporciona como tal en la expresión a comprobar un costo de acuerdo a los datos consignados en una tabla de tipos de vino y costos así como ganancias, aunque también entran en juego el elemento de las posibles cantidades variables en este caso las botellas de cada vino y su respectivo costo que no deben superar la inversión inicial.

Ítem # 18 prueba saber año 2010

En 1980, 4.500 millones de habitantes poblaban la Tierra y se observaba un crecimiento de cerca del 2% anual, encontrándose la información del número de millones de habitantes en la Tierra después de t años a partir de ese año era:

\[H(t) = 4.500 e^{0.02t} \]

Para determinar el número de años que deben transcurrir desde 1980 para que la población sea el doble de la que había en ese año, se debe hallar el valor de t que satsface la ecuación

A. \[2 = e^{0.02(t-1980)} \]
B. \[2 = e^{0.02t} \]
C. \[H(t) = 9000 e^{0.02t} \]
D. \[H(t) = 4500 e^{0.02t} \]

Este ítem explora aspectos referidos a la modelación de situaciones de variación con funciones exponenciales y al uso de técnicas de aproximación en procesos infinitos.
numéricos. Está relacionado además con la capacidad del estudiante para interpretar y usar diferentes tipos de lenguaje, describir relaciones y manipular expresiones simbólicas.

Para dar solución a la pregunta el estudiante debe solo reemplazar la condición con la población doble de 4500 millones de habitantes a 9000 millones de habitantes y despejar o reducir la ecuación correspondiente y observar la opción más factible.

La solución del ítem sería la opción B

En la rejilla se clasifica esta pregunta en cuadriculas en rejilla Gde nuevo en las funciones tipo exponenciales asociadas al tiempo que es el elemento de la cantidad variable que afecta número de habitantes propuesto, la cantidad constante en este caso es la exponencial.
4. ANÁLISIS DE LOS RESULTADOS

La observación y el correspondiente ejercicio de indagación de los ítems con los elementos y características del pensamiento variacional registrado en la rejilla, verificando cada ítem en que categoría se puede clasificar y que tan completa o proporcionalmente distribuida y objetiva puede ser la prueba SABER 11 en todos los aspectos, constituyen medios que permiten recopilar información muy valiosa sobre que tan objetiva e integral puede ser de acuerdo a los cuestionarios y pensamientos por supuesto año tras año en materia de estos.

En el análisis de la información suministrada se pudo verificar que la preponderancia en la rejilla propuesta para este informe, la tienen la característica del pensamiento Análisis de funciones seguida de Procesos algebraicos y por último la de Patrones y regularidades, así mismopasa conlos elementos del pensamiento, la tienen Las cantidades variables y constantes con su dependencia seguido de la Interpretación de la información suministrada en una grafica de acuerdo al tipo de función y por último la Generación de los datos a consignar en una tabla en las preguntas seleccionadas que de alguna manera era lo que quería mostrar.

En la prueba SABER 11 existe una aparición más relevantede ciertos tipos de temáticas y por decirlo de otra manera los tipos de preguntas que involucran no todo lo concerniente en cuanto a lo referenciado desde los estándares y lineamientos curriculares del pensamiento variacional como tal, entonces cuando se observan los resultados de acuerdo a los niveles de cada estudiante en las instituciones puede no ser tan objetivo y certero desde el manejo de todos los conceptos correspondientes y está involucrada la variable como el tipo de prueba que varía de acuerdo como se plantee para cada sesión semestral.

Lo importante es que estos resultados sirvan como aporte a los educadores matemáticos en secundaria para que proporcionen en el aula todos los tipos de problemas que incluyan todos los elementos y características de los pensamientos apuntando a que los estudiantes cuando sean evaluados puedan manejar con propiedad cada tipo de pregunta que los involucre.
5. CONCLUSIONES Y RECOMENDACIONES

La propuesta metodológica encaminada a esa corroboración y análisis de la prueba SABER 11 tiene como eje central el que los criterios tengan concordancia con las características de la organización de las matemáticas planteadas desde currículo, con los procesos y niveles que van a ser evaluados.

- Este proyecto de grado permite resaltar la lectura crítica y reflexiva que como aporte a este se deben realizar a los Lineamientos Curriculares y los Estándares Básicos de Matemáticas, por lo que son directrices que brindan elementos (Procesos Generales, Contextos y Conocimientos Básicos) para el planteamiento, diseño y ejecución de una propuesta que en este caso que resalta una prueba externa evaluativa.

- Con base en la bibliografía, se concluye que el currículo en matemáticas suministra elementos y herramientas que posibilitan el desarrollo del pensamiento variacional como eje transversal en los demás pensamientos matemáticos como lo son las situaciones problema enmarcadas permitiendo al estudiante involucrarse en su proceso de reconocimiento de una manera directa, y así contribuir a la formalización de conceptos matemáticos.

- La importancia de corroborar algunos referentes teóricas en la prueba SABER 11 desde el pensamiento variacional, es que se convierta en una actividad intelectual, de examinar, detectar, por medio de la inducción y la deducción, patrones y regularidades, sistemas de representación, procesos algebraicos y estructuras aditivas, multiplicativas que conlleven a resolver una situación problema, a través de diferentes estrategias encaminadas a los procesos de generalización y a la creación y aplicación de modelos matemáticos.

- Con base en el análisis de las Categorías, la estructura de situaciones tipo ejemplos preguntas de la prueba SABER 11 relacionados con la variación y cambio permitió ver que estos que tienen que ver más con ciertas características y elementos que con otros en realidad, entonces este proyecto es un instrumento eficaz que ayuda a
comprender mejor el entorno de la evaluación y visualizar que tan objetivamente y completa es en todo aspecto.

- Esta propuesta queda abierta a otros estudiantes en educación matemática para la corroboración de las características y elementos de los pensamientos numérico, geométrico, métrico y aleatorio en la prueba SABER 11.
6. REFERENCIAS BIBLIOGRÁFICAS

Acevedo, M, García, G. (2007) fundamentación conceptual área de matemáticas. ICFES.

Examen de Estado de la educación media ICFES SABER 11° (2010, Agosto) Qué se evalúa Cómo se interpretan los resultados individuales Bogotá, Colombia: ICFES.

Instituto Colombiano Para el Fomento de la Educación Superior. (1995, Agosto) “Algunas estadísticas generales de los inscritos a los Exámenes de Estado”. Bogotá, Colombia: ICFES.

Revista Iberoamericana de Educación (ISSN: 1681-5653)

7. CONSULTAS REALIZADAS EN INTERNET

www.icfes.gov.co

www.reduc.cl/educa/edutextos.nsf/0/c8202ad8490b6acb04256a38006877c6/$FILE/rae08.303.pdf