EVALUACIÓN DE LA PRODUCCIÓN DE METANO EN LA DIGESTIÓN ANAEROBIA DE VINAZAS PRETRATADAS CON UN PROCESO DE OXIDACIÓN AVANZADA

Presentado por

Biólogo. Juan José Gil Molano
Maestría en Ingeniería, Énfasis en Ingeniería Sanitaria y Ambiental

Dirigido por

Janeth Sanabria Gómez, Ph.D.

Codirigido por

Sandra Baena, Ph.D.

Universidad del Valle
Escuela de Recursos Naturales y del Medio Ambiente
Programa de postgrado en Ingeniería Sanitaria y Ambiental
Maestría en Ingeniería

Santiago de Cali, Marzo de 2012.
TABLA DE CONTENIDO

1 INTRODUCCIÓN ... 11

2 OBJETIVOS ... 13

2.1 OBJETIVO GENERAL .. 13

3 HIPOTÉSIS ... 13

4 MARCO REFERENCIAL ... 14

4.1 VINAZAS ... 14

4.1.1 Caracterización de los diferentes tipos de vinaza ... 16

4.2 TRATAMIENTO DE VINAZAS ... 18

4.3 DIGESTIÓN ANAEROBIA ... 19

4.3.1 Digestión anaerobia de vinazas ... 21

4.4 FOTOVENTON ... 22

4.5 OZONO ... 25

4.6 ACOPLES ... 26

4.6.1 POA’s + Digestión anaerobia .. 27

4.6.2 POA’s + Digestión anaerobia + vinazas .. 28

4.6.3 Biogás y valorización de las vinazas ... 28

5 MATERIAL Y MÉTODOS .. 30

5.1 UBICACIÓN ESPACIAL .. 31

5.2 DESCRIPCIÓN DEL EXPERIMENTO ... 31

5.2.1 Procedencia de las vinazas .. 32

5.2.2 Caracterización de las vinazas .. 33

5.2.3 Pretratamiento de las vinazas .. 33

5.2.4 Producción de metano .. 35

5.2.5 Seguimiento biológico de archaeas metanogénicas .. 40

5.3 ANÁLISIS FINANCIERO DEL NIVEL DE PERFIL DEL USO DE BIOGÁS A PARTIR DE LA
METANIZACIÓN DE VINAZAS .. 43

5.3.1 LOS POA’s COMO UN INCREMENTO EN LAS VENTAS (AHORROS) EN LA
METANIZACIÓN DE VINAZAS .. 43

6 RESULTADOS Y DISCUSIÓN ... 44

6.1 PRETRATAMIENTO DE VINAZAS CON FOTOVENTON ... 44

6.2 PRETRATAMIENTO DE VINAZAS CON OZONO ... 46

6.3 PRODUCCIÓN DE METANO ... 47

6.3.1 Análisis estadístico .. 47
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2</td>
<td>Cinéticas de producción de metano</td>
<td>56</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Inhibición de la producción de metano</td>
<td>61</td>
</tr>
<tr>
<td>6.4</td>
<td>SEGUIMIENTO DE ARCHAES METANOGÉNICAS POR TÉCNICAS DE BIOLOGÍA MOLECULAR</td>
<td>64</td>
</tr>
<tr>
<td>6.5</td>
<td>ANÁLISIS FINANCIERO</td>
<td>70</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Pretratamiento de vinaza como una adicionalidad económica a su metanización</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONES</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>RECOMENDACIONES</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>BIBLIOGRAFÍA</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>ANEXOS</td>
<td>84</td>
</tr>
<tr>
<td>10.1</td>
<td>ALTERNATIVA 1: SUSTITUCIÓN DE GNC, QUEMA DE BIOGÁS EN CALDERAS Y LA GENERACIÓN DE 10 MW-H/AÑO</td>
<td>84</td>
</tr>
<tr>
<td>10.2</td>
<td>ALTERNATIVA 2: VENTA DE ENERGÍA ELÉCTRICA A LA RED NACIONAL</td>
<td>86</td>
</tr>
</tbody>
</table>
LISTA DE TABLAS

TABLA 1. COMPONENTES PRINCIPALES DE LAS VINAZAS DE TRES MATERIAS PRIMAS DE LA INDUSTRIA DE LA CAÑA DE AZÚCAR .. 15
TABLA 2. CARACTERIZACIÓN DE VINAZAS DE DIFERENTES MATERIAS PRIMAS ... 17
TABLA 3. CARACTERIZACIÓN DE VINAZA DE CAÑA DE AZÚCAR ANTES DE LA ETAPA DE CONCENTRACIÓN 17
TABLA 4. COMPOSICIÓN Y PROPIEDADES DEL BIOGÁS BAJO CONDICIONES ESTÁNDAR (0°C, 102.325 KPa) .. 29
TABLA 5. PARÁMETROS TERMODINÁMICOS DEL CH₄ EN CONDICIONES NORMALES .. 29
TABLA 6. CARACTERÍSTICAS DEL BIOGÁS SEGÚN LA MATER PRIMA .. 30
TABLA 7. NOMENCLATURA DEL SUSTRAITO (VINAZAS), SEGÚN EL PRETRATAMIENTO RECIBIDO 35
TABLA 8. COMPOSICIÓN DE LA SOLUCIÓN DE VITAMINAS EMPLEADAS .. 37
TABLA 9. PRUEBAS DE PRODUCCIÓN DE METANO, TRATAMIENTOS DEL EXPERIMENTO 37
TABLA 10. TRATAMIENTOS DE PRODUCCIÓN DE METANO ELEGIDOS PARA ANÁLISIS BIOLÓGICO 40
TABLA 11. ESPECIFICACIONES DEL COCKTAIL DE PCR ... 41
TABLA 12. PROGRAMA DE PCR .. 42
TABLA 13. REDUCCIONES DE MATERIA ORGÁNICA EN LOS EXPERIMENTOS DE FOTOFENTON, EN TÉRMINOS DE DQO ... 44
TABLA 14. REDUCCIONES DE MATERIA ORGÁNICA EN EL PRETRATAMIENTO CON OZONO, EN TÉRMINOS DE DQO .. 47
TABLA 15. RESUMEN DE LA PRODUCCIÓN DE METANO DE LOS TRATAMIENTOS ¡ERROR! MARCADOR NO DEFINIDO.
TABLA 16. REMOCIÓN DE DQO DE LAS PRUEBAS DE PRODUCCIÓN DE METANO ... 51
TABLA 17. ANÁLISIS DE TUKEY PARA LOS SUSTRAITOS ... 53
TABLA 18. ANÁLISIS DE TUKEY, PARA LOS INÓCULOS .. 55
TABLA 19. CONCENTRACIÓN DE DNA Y AMPLIFICACIÓN POR PCR .. 64
TABLA 20. APROVECHAMIENTOS DE BIOGÁS PLANTEADOS, PARA USO EN LAS AGROINDUSTRIAS AZUCARERAS ... 71
TABLA 21. BENEFICIOS DEL APROVECHAMIENTO DEL BIOGÁS .. 72
TABLA 22. ANÁLISIS FINANCIERO DE LAS OPCIONES DE USO: PRODUCCIÓN DE ENERGÍA ELÉCTRICA Y QUEMA DE BIOGÁS EN CALDERAS PIROTUBULARES Y GENERACIÓN DE 1MW ... 73
TABLA 23. ANÁLISIS FINANCIERO - INCLUYENDO EL PRETRATAMIENTO CON FOTOFENTON 74
TABLA 24. ANÁLISIS FINANCIERO – INCLUYENDO EL PRETRATAMIENTO CON OZONO .. 74
TABLA 25. PRESUPUESTO DE INVERSIONES .. 84
TABLA 26. COSTOS DE OPERACIÓN .. 84
TABLA 27. PRODUCCIÓN DE LA ALTERNATIVA 1 .. 85
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.</td>
<td>Flujo Neto de Caja</td>
<td>85</td>
</tr>
<tr>
<td>29.</td>
<td>Presupuesto de Inversiones</td>
<td>86</td>
</tr>
<tr>
<td>30.</td>
<td>Costos de Operación</td>
<td>86</td>
</tr>
<tr>
<td>31.</td>
<td>Producción de la Alternativa 2</td>
<td>87</td>
</tr>
<tr>
<td>32.</td>
<td>Flujo Neto de Caja</td>
<td>87</td>
</tr>
</tbody>
</table>
LISTA DE FIGURAS

FIGURA 1. PROCESO COMPLETO DE LA FABRICACIÓN DE ALCOHOL CARBURANTE EN EL VALLE DEL CAUCA 15
FIGURA 2. TRANSFORMACIÓN DE LA MATERIA ORGÁNICA HACIA METANO DURANTE LAS CUATRO ETAPAS DE LA DIGESTIÓN ANAEROBIA 1. BACTERIAS HIDROLÍTICAS Y ACIDOGÉNICAS; 2. BACTERIAS ACETOGÉNICAS; 3. BACTERIAS HOMOACETOGÉNICAS; 4 ARCHAEAS METANOGÉNICAS HIDROGENOFILICAS; 5. ARCHAEAS METANOGÉNICAS ACETOCLÁSTICAS. .. 20
FIGURA 3. ÁRBOL DE LA VIDA .. 21
FIGURA 4. ESQUEMATIZACIÓN DEL EXPERIMENTO ASOCIADO A CADA OBJETIVO ESPECÍFICO 31
FIGURA 5. UBICACIÓN ESPACIAL DE LA DESTILERÍA DEL INGENIO MAYAGÜEZ 32
FIGURA 6. EQUIPO DE RADIACIÓN (SUNTEST) EMPLEADO DURANTE EL PRETRATAMIENTO CON FOTOCATÁLISIS ... 33
FIGURA 7. SISTEMA DE OZONIZACIÓN. A) GENERADOR DE OZONO. B) REACTOR DE CONTACTO 34
FIGURA 8. ESQUEMA DE OZONIZACIÓN ... 35
FIGURA 9. DESCRIPCIÓN DEL MONTAJE DE LAS BOTELLAS PARA LA PRODUCCIÓN DE METANO 38
FIGURA 10. A) SIEMBRA EN ANAEROBIOS. B) FORMA DE INCUBACIÓN ... 39
FIGURA 11. CROMATÓGRAFO DE GASES SHIMADZU GC-14 (SISTEMA DE DETECCIÓN FID) 39
FIGURA 12. DIAGRAMAS DE CAJAS Y ALAMBRES PARA LOS FACTORES SUSTRATO E INÓCULOS 52
FIGURA 13. VARIACIONES DEL VOLUMEN DE METANO ACUMulado DURANTE 70 DÍAS, CON EL IG ... 56
FIGURA 14. VARIACIONES DEL VOLUMEN DE METANO ACUMulado DURANTE 70 DÍAS, CON EL IV ... 57
FIGURA 15. VARIACIONES DEL VOLUMEN DE METANO ACUMulado DURANTE 70 DÍAS, CON EL IGV ... 58
FIGURA 16. CINÉTICAS DE PRODUCCIÓN DE METANO, PARA LAS VINAZAS DILUIDAS, TANTO PRETRATADAS COMO SIN PRETRATAR. A) IG, B) IV Y C) IGV.. 59
FIGURA 17. CINÉTICAS DE PRODUCCIÓN DE METANO, PARA LAS VINAZAS DILUIDAS, TANTO PRETRATADAS COMO SIN PRETRATAR. A) IG, B) IV Y C) IGV.. 60
FIGURA 18. DAÑO CELULAR EN A: VIN D FF [1 mol L⁻¹] (20) Y B: VIN D FF [1 mol L⁻¹] (15) 63
FIGURA 19. DNA EN GEL DE AGAROSA 2.4% .. 65
FIGURA 20. PRODUCTO PCR (1106F Y 1378R) EN GEL DE AGAROSA 2.4% 66
FIGURA 21. SEPARACIÓN DE BANDAS OBTENIDAS EN LA AMPLIFICACIÓN POR PCR, MEDIANTE DGGE... 67
FIGURA 22. ESQUEMA TÉCNICO DE METANIZACIÓN DE VINAZAS PARA UNA PRODUCCIÓN DE 600 M3 D-1 DE VINAZAS CON CONCENTRACIÓN DE SÓLIDOS DEL 35% .. 71
FIGURA 23. VALORES DE CÁLCULO EMPLEADOS EN EL ANÁLISIS .. 72
Ecuación 1. Generación de radical hidroxilo (OH•) por regeneración de Fe^{2+} 23
Ecuación 2. Generación de radical (HO_{2•}) .. 23
Ecuación 3. Concentración de DNA .. 41
Ecuación 4. Reacciones de generación de OH• con O_{2} .. 45
LISTA DE ABREVIATURA Y SIMBOLOS

AGV – Ácidos Grasos Volátiles
CHP – Combined Heat and Power
CH₄ – Metano
D – Vinaza diluida
DA – Digestión Anaerobia
DQO – Demanda Química de Oxígeno, de acuerdo a la metodología (APHA, 2005)
DQOₜ – Demanda Química de Oxígeno Total, de acuerdo a la metodología (APHA, 2005)
EPFL – École Polytechnique Fédérale de Lausanne
FF – Vinaza pretratada con FotoFenton
GAOX – Grupo de Investigación en Procesos de oxidación avanzada para el tratamiento biológico y químico
GC – Guanina-Citosina
GRALTA – Grupo de Investigación en Alta Tensión
H₂O₂ – Peróxido de Hidrógeno
LIP – Liable Iron Pool
ND – Vinaza no diluida
OH⁺ – Radical hidroxilo
ORP – Potencial de Oxido-Reducción, por sus siglas en ingles
OZ – Vinaza Ozonizada
POA – Proceso de oxidación avanzada
pb – Pares de Bases
SST – Sólidos Suspendidos Totales, de acuerdo a la metodología (APHA, 2005)
SSV – Sólidos Suspendidos Volátiles, de acuerdo a la metodología (APHA, 2005)
SUBA – Sustainable Biofuels from Agricultural Residues in the Northern Andean Countries
WP4 – Work Package 4 (Paquete de Trabajo No. 4 del proyecto SUBA)
RESUMEN

La producción de vinazas puede oscilar desde 2M–3M L vinazas día\(^{-1}\), constituyéndose en uno de los efluentes más contaminantes de los ingenios productores de bioetanol. En este trabajo se evaluó el mejoramiento de la producción de metano en vinazas, a partir de su pretratamiento con dos Procesos Avanzados de Oxidación (fotofenton y ozono). Para los pretratamientos con fotofenton se compararon dos concentraciones de \(\text{H}_2\text{O}_2\) (0.5 y 1 mol L\(^{-1}\)) y dos relaciones \(\text{H}_2\text{O}_2/\text{Fe}^{+3}\) (15 y 20), mientras que para el ozono se tuvo en cuenta dos tiempos de contacto (30 y 60 mins). La digestión anaerobia se realizó en botellas de 120 mL (tandas), aplicando 70 mg de DQO y evaluando tres inóculos diferentes: inóculo granular (IG), inóculo de tratamiento de vinazas (IV) y una mezcla de los anteriores (IGV).

El seguimiento de la producción de metano se realizó a diario por mediciones en cromatografía gaseosa durante 40 días. El pretratamiento con POA’s mejoró la producción de metano en las vinazas pretratadas, destacándose el pretratamiento de fotofenton con \([\text{H}_2\text{O}_2]= 0.5 \text{ mol L}^{-1}\) y relación \(\text{H}_2\text{O}_2/\text{Fe}^{+3} = 20\) con la producción de metano más alta (19.5 mL ó 0.28 mL CH\(_4\) mg DQO\(_{adicionada}^{-1}\)) y un menor requerimiento de reactivos. El pretratamiento de fotofenton con \([\text{H}_2\text{O}_2]= 1 \text{ mol L}^{-1}\) y relación \(\text{H}_2\text{O}_2/\text{Fe}^{+3} = 15\), causó inhibición total a los tres inóculos, mientras que el pretratamiento de fotofenton con \([\text{H}_2\text{O}_2]= 1 \text{ mol L}^{-1}\) y relación \(\text{H}_2\text{O}_2/\text{Fe}^{+3} = 20\), causó inhibición a los inóculos IV e IGV. El ozono se presentó como una alternativa atractiva para el mejoramiento de la metanización de vinazas, por los resultados obtenidos y por ser una tecnología más económica. En el pretratamiento con ozono no hubo inhibición de la producción de metano, no obstante, la mayor producción de metano se tuvo con la menor dosis de ozono (30 mins). Todos los pretratamientos, excepto los que inhibieron, aumentaron la tasa de producción de metano (d\(^{-1}\)) respecto a las vinazas no pretratadas. Las mejores producciones de metano las presentó el IG, sin embargo el inóculo IGV presentó una buena estabilidad en la producción de metano con diferentes tratamientos. El análisis financiero en el nivel de perfil de un proyecto de aprovechamiento de biogás en destilerías, mostró que los pretratamientos con fotofenton y ozono incrementan en un 40% la TIR y logran recuperar la inversión en un plazo de 1.5 años. Por tanto, se considera que los POA’s mejoran la producción de metano y aumentan la tasa de producción, mediante la transformación de la materia orgánica sin mineralizarla.

Palabras claves: POA, vinaza, metano, digestión anaerobia, inóculo.
ABSTRACT

Vinasses production could vary between 2M-3M L vinasses day⁻¹, being one of the most pollutant effluent from the distilleries and the sugar factories. This work evaluated the improvement of methane production from pretreated vinasses by means of Advanced Oxidation Processes – AOP – (photoFenton and ozone). PhotoFenton pretreatments used two concentration of H₂O₂ (0.5 and 1 mol L⁻¹) and two value ratio H₂O₂/Fe⁺³ (15 and 20), meanwhile ozone pretreatments used two contact times (30 and 60 min). Anaerobic digestion was carried out in 120 mL-bottles (batches), applying 70 mg of COD and evaluating three different inoculums: granular inoculum (GI), inoculum from vinasses treatment (VI) and a mix of the two very previous (GVI). The daily methane production was followed by gas chromatography along 40 days. AOP’s pretreatments improved the methane production in vinasses, photoFenton pretreatment with [H₂O₂]= 0.5 mol L⁻¹ and ratio H₂O₂/Fe⁺³ = 20 showed the major production of methane (19.5 mL or 0.28 mL CH₄ mg COD.ad⁻¹) and the lowest reagent requirement. The photoFenton pretreatment with [H₂O₂]= 1 mol L⁻¹ and ratio H₂O₂/Fe⁺³ = 15, caused total inhibition on all three inoculums, meanwhile the photoFenton pretreatment with [H₂O₂]= 1 mol L⁻¹ and ratio H₂O₂/Fe⁺³ = 20, caused inhibition on both inoculums: VI and GVI. Ozone is an attractive alternative for methane improvement, since it is a cheaper technology compared to photoFenton and because of its results in this work. Ozone pretreatments did not cause methane production inhibition whereas, the major production with this AOP was obtained with the lowest ozone dosage (30 min). All pretreatments, less which caused inhibition, increased the methane production rate (d⁻¹) compared to unpretreated vinasses. Major methane productions were showed by GI nevertheless, GVI showed a good stability along the methane production with different treatments. The economic assessment at level of profile in a biogas usage project in distilleries showed that both kind of AOP pretreatments increased 40% the IRR and could recover the investment in 1.5 years. So, AOP pretreatments are considered as methane rate and production improvers, by means of organic matter transformation, without mineralization.

Keywords: AOP, vinasse, methane, anaerobic digestion, inoculum.
1 INTRODUCCIÓN

La escasez de combustible fósil ha amenazado la actividad económica global, generando a su vez diferentes iniciativas para la producción de combustibles renovables y el desarrollo de nuevas fuentes de energías alternativas (Commission of the European Communities, 2005; Biomass Research Development Board, 2008; F.O-Licht, 2011). En Colombia se han implementado diferentes estrategias para incentivar la producción de biocombustibles, con criterios de sostenibilidad financiera y abastecimiento energético (Congreso de Colombia, 2001; Departamento Nacional de Planeación, 2008; Ministerio de Minas y Energía, 2009). En consecuencia, se han construido cinco destilerías de alcohol carburante a partir de caña de azúcar, con una producción de 1.050.000L.d⁻¹ con la finalidad de suplir la necesidad actual del país (1.370.000 L.d⁻¹) (ASOCAÑA, 2010). En la actualidad, la mezcla de gasolina con alcohol carburante es del 10%, a partir de la aprobación del Decreto 1135 se espera alcanzar una mezcla del 20% y para el año 2016 contar con vehículos flex que soporten hasta un 100% de alcohol carburante.

El proceso de la destilación de alcohol está acompañado de la generación de vinazas como subproducto. Las vinazas son un residuo altamente contaminante debido a su alta carga orgánica (Rosillo Callé et al., 2000; Wilkie et al., 2000; BNDES y CGEE, 2008; Mohana et al., 2009). Lo anterior, no permite considerar al alcohol carburante como un buen sustituto (o reducción de su consumo) de la gasolina de origen fósil. Actualmente, el sistema de destilación Colombiano (Tecnología India) oscila entre 1 a 4L de vinaza por cada litro de alcohol carburante. Las vinazas en Colombia están siendo reusadas en ferti-irrigación, deshidratación (vinurea) y compostaje (CENICAÑA, 2009). Ninguna de las alternativas por sí sola es viable para manejar todo el volumen de vinaza producido mediante las tecnologías mencionadas. Por tanto, es importante contemplar medidas adicionales de reuso de estas vinazas.

Los procesos de oxidación avanzada (POA´s), se han usado como alternativa de descontaminación por su gran potencial oxidante, siendo capaces de transformar compuestos no biodegradables hasta formas biodegradables mediante una oxidación parcial. Los POA tienen la capacidad de mineralizar por completo los contaminantes orgánicos (CYTED, 2001; Malato et al., 2009). Sin embargo esta práctica no es común debido a los altos costos que esto representaría. Estas tecnologías necesitan ser mejoradas para hacerlas económicamente viables. De esta manera, los acoples con sistemas biológicos representan una de las mejores opciones para disminuir los costos de implementación y los impactos ambientales producidos por los residuos (García-Montaño et al., 2008; Pidou et al., 2009). Por otro lado, la digestión anaerobia presenta las mejores cualidades del tratamiento biológico de efluentes con alta carga orgánica (DQO≥1000mgL⁻¹) a bajos costos de operación y la generación de metano como una adicionalidad de gran valor (Van Haandel y Lettinga, 1994; Chernicharo, 2007).

A pesar de ser el metano una alternativa energéticamente viable, se debe tener en cuenta que la producción del mismo mediante tratamientos anaerobios, debe ser bien controlada,
ya que pequeños cambios en el proceso (sobrecarga, temperatura, pH, sustancias tóxicas, entre otros) podrían desequilibrar el sistema, disminuyendo así, la eficiencia biológica de transformación de la materia orgánica en metano; de esta manera se obtendría un biogás de bajo poder calorífico (menor concentración de CH₄%,) (Días-Báez et al., 2002) y de un pobre aprovechamiento. De este modo, se propone esta investigación para evaluar el desempeño de acoples POA’s + digestión anaerobia en vinazas, como mecanismo para incrementar la biodegradabilidad y por ende la producción de metano. Esta investigación genera un muy buen punto de partida para el desarrollo de tecnologías energéticas rentables que remplacen los combustibles fósiles o sustituyan energía eléctrica en las destilerías del Valle del Cauca y en otras zonas de Colombia, donde se decidiera implementar la metanización de vinazas. No obstante, es necesario darle continuidad a esta investigación, mediante escalas piloto en continuo.

En los procesos de digestión anaerobia, es bien conocido que el decaimiento de la producción de metano se debe a la inhibición de las archaeas metanogénicas, causada por diferentes factores que generan desbalances en el proceso (Ahring et al., 1995). Aunque la producción de metano se considere estable y se pueda recuperar rápidamente después de inhibiciones (sin exposición a compuestos tóxicos) (Chen et al., 2008), es necesario conocer el comportamiento de las comunidades metanogénicas implicadas en el proceso de metanización y así, mantener la máxima eficiencia de producción de metano, asegurar su uso continuo y recuperar la inversión de los proyectos en los plazos proyectados.

Este estudio muestra el mejoramiento de la metanización mediante el aumento de la biodegradabilidad de las vinazas (posible reducción de compuestos inhibitorios), el incremento de la velocidad de generación de metano y el efecto de los pretratamientos (Fotofenton y Ozono) sobre las comunidades metanogénicas.
2 OBJETIVOS

2.1 OBJETIVO GENERAL

Evaluar la producción de metano en la digestión anaerobia de vinazas pretratadas, aplicando ozono y fotofenton.

OBJETIVOS ESPECÍFICOS

1. Evaluar a escala laboratorio la influencia de dos concentración de H₂O₂ y dos relaciones H₂O₂/Fe⁺³ sobre la producción de metano a partir de vinazas pretratadas con fotofenton.
2. Evaluar a escala laboratorio la influencia de dos tiempos de oxidación sobre la producción metano a partir de vinazas pretratadas con ozono.
3. Analizar el efecto en la producción de metano de inóculos de alta organización microbiológica, inóculos preadaptados al sustrato y mezcla de inóculos.
4. Evaluar el uso de técnicas moleculares para el estudio del comportamiento microbiológico de archaeas metanogénicas.
5. Estimar el impacto económico de la producción de metano a partir de vinazas pretratadas con un POA, usando un análisis financiero en el nivel de perfil.

3 HIPOTÉSIS

Los procesos de oxidación avanzada (POA’s) incrementan la biodegradabilidad del contenido orgánico de las vinazas, reduciendo el tiempo de las fases de hidrólisis y acidogénesis y mejorando la tasa de aprovechamiento del sustrato por parte de los microorganismos metanogénicos. De este modo, se genera mayor eficiencia en la metanización de las vinazas.
4 MARCO REFERENCIAL

4.1 Vinazas

El afán mundial por reemplazar los combustibles fósiles con biocombustibles, ha generado un crecimiento desmesurado en la producción de alcohol carburante, biodiesel y de los residuos propios de cada proceso. En el caso preciso del bioetanol, se estima que en el año 2010, se produjeron 23.012 millones de galones de etanol en el mundo; Colombia (séptimo productor de etanol a nivel mundial), produjo 83,2 millones de galones en 2009 (Renewable Fuels Association, 2011).

El alcohol puede ser obtenido a partir de varias materias primas con alto contenido de carbohidratos (remolacha, caña de azúcar y cultivos amiláceos) y de material celulósico (Wilkie et al., 2000). De esta manera, la producción y las características de los efluentes de una destilería de alcohol -principalmente vinazas- son muy diferentes y dependen de la materia prima y de las tecnologías implementadas en el proceso de producción de alcohol (Pant y Adholeya, 2007). Wilkie et al. (2000) mencionan que las características de cada vinaza, dependen de los hábitos de producción y de las prácticas de limpieza del personal de la destilería, del tipo de levadura, de los sistemas utilizados para la fermentación de las melazas, entre otros. El uso de las diferentes materias primas para la obtención de alcohol, depende de las características y de la vocación de los suelos, generalmente dadas por las condiciones climáticas de las regiones. Los tres mayores productores de alcohol son E.E.U.U (almidón de maíz), Brasil (caña de azúcar) y la Unión Europea (remolacha) (Cibis et al., 2007; Crago et al., 2010). Para el caso Colombiano, se tiene destilación de alcohol a partir de caña de azúcar generalmente asentada en el valle del río Cauca.

De una tonelada de caña de azúcar se obtienen 80 L de alcohol carburante y entre 80 y 1040 L de vinaza según el contenido de sólidos totales (CENICAÑA, 2009; ASOCAÑA, 2010; Casas, 2010; Federación Nacional de Biocombustibles, 2011). Las vinazas pueden presentar una DQO que varía según el esquema de producción, la tecnología y la materia prima (60 - 180 g L⁻¹) (Wilkie et al., 2000). Según Vazoller (1997) citado por Ferreira (2006) la carga orgánica de las vinazas, es atribuida a su contenido de azúcar, etanol, glicerol y ácidos orgánicos (láctico, acético y succínico).

A continuación se presenta el esquema de producción de alcohol del Valle del Cauca
En la Tabla 1 se observan los componentes principales de las vinazas: materia orgánica, potasio (K), azufre (S), magnesio (Mg), nitrógeno (N) y calcio (Ca); sin embargo, esta composición es variable según provenga de melaza, jugo o la mezcla de ambos.

Tabla 1. Componentes principales de las vinazas de tres materias primas de la industria de la caña de azúcar

<table>
<thead>
<tr>
<th>Componente (kg/m3)</th>
<th>Jugo</th>
<th>Melaza</th>
<th>Mixto de melaza y jugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0,28</td>
<td>0,77</td>
<td>0,46</td>
</tr>
<tr>
<td>K$_2$O$_5$</td>
<td>1,47</td>
<td>6</td>
<td>3,6</td>
</tr>
<tr>
<td>CaO</td>
<td>0,46</td>
<td>2,45</td>
<td>1,18</td>
</tr>
<tr>
<td>MgO</td>
<td>0,29</td>
<td>1,04</td>
<td>0,53</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>1,32</td>
<td>3,73</td>
<td>2,67</td>
</tr>
<tr>
<td>Materia Orgánica</td>
<td>23,44</td>
<td>52,04</td>
<td>32,63</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>69</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Cu</td>
<td>7</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Zn</td>
<td>2</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Mn</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>pH (unidades)</td>
<td>3,7</td>
<td>4,4</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Las vinazas también presentan otros compuestos con características nocivas para el ambiente como: coloración marrón (causada por las melanoidinas), caramelos de azúcares, furfurales, trazas de metales pesados y contaminantes orgánicos (cloroformo, pentaclorofenol, fenol y cloruro de metilo); dentro de los componentes fenólicos se encuentran ácidos tánicos y húmicos propios de la materia prima. La temperatura de este efluente oscila entre 70 y 80°C, su naturaleza es ácida y presenta una alta concentración de sólidos disueltos (Wilkie et al., 2000; Pant y Adholeya, 2007; Mohana et al., 2009). Todos los anteriormente mencionados, podrían inhibir la fermentación microbiológica de los tratamientos biológicos de la vinaza, bajo exposición a altas concentraciones (Ferreira, 2006).

4.1.1 Caracterización de los diferentes tipos de vinaza

Según Casas (2010), en el caso de la destilación de etanol a partir de caña de azúcar, se pueden tener diferentes calidades de vinazas según el tipo de proceso que se lleve a cabo. En la Figura 1 (Cuadro de proceso de alcohol carburante), se observa que las vinazas aparecen después de la destilación de los vinos; en este momento, las vinazas son catalogadas como vinazas con 10% de sólidos totales (relación L etanol / L vinaza = 1/13-15); esta concentración es bastante común en las destilerías brasileñas. En el diagrama del proceso también se observa una recirculación de la vinaza hacia los fermentadores, el vino que saldrá de los fermentadores y será destilado, proporcionará unas vinazas con 35% de sólidos totales (relación L etanol / L vinaza = 1/4-5); este tipo de vinazas es muy común en las destilerías de la India, este paquete tecnológico se instaló en todas las destilerías de alcohol carburante en el Valle del Cauca por Praj Industries Ltd. En el mismo esquema se observan unos concentradores de vinaza, la vinaza que se introduce en estos concentradores es de 35% de sólidos totales y al salir de estas unidades sale con 55% de sólidos totales (relación L etanol / L vinaza = 1/0,89-2). La menor relación de L etanol / L vinaza, la presenta la destilería del Ingenio Manuelita en Colombia (1/0,89-1); ya que ellos cuentan con doble unidad de concentración.

En la Tabla 2, Wilkie et al. (2000) resumen la información de la producción de vinazas y sus características, dependiendo de la materia prima utilizada para la destilación de alcohol. Cabe anotar que la información presentada por los autores para Miel B de caña de azúcar, proviene de un esquema productivo sin recirculación ni concentración de vinaza.
Tabla 2. Caracterización de vinazas de diferentes materias primas

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Producción de vinaza (L / L EtOH)</th>
<th>DBO_5</th>
<th>DQO</th>
<th>N total</th>
<th>P total</th>
<th>K (mg L⁻¹)</th>
<th>S total</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miel B de remolacha</td>
<td>11,6</td>
<td>44,9</td>
<td>91,1</td>
<td>3569</td>
<td>163</td>
<td>10030</td>
<td>3716</td>
<td>5,4</td>
</tr>
<tr>
<td>Jugo de caña</td>
<td>16,3</td>
<td>16,7</td>
<td>30,4</td>
<td>628</td>
<td>130</td>
<td>1952</td>
<td>1356</td>
<td>4</td>
</tr>
<tr>
<td>Miel B de caña</td>
<td>14</td>
<td>39</td>
<td>84,9</td>
<td>1229</td>
<td>187</td>
<td>5124</td>
<td>3478</td>
<td>4,5</td>
</tr>
<tr>
<td>Celulósica</td>
<td>11,1</td>
<td>27,6</td>
<td>61,3</td>
<td>2787</td>
<td>28</td>
<td>39</td>
<td>651</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Fuente: Wilkie et al. (2000)

En la Tabla 3 se observa una caracterización de vinazas provenientes de la destilería de alcohol del Ingenio Mayagüez S.A., esta caracterización es de una vinaza después de la etapa de recirculación y antes de la etapa de concentración.

Tabla 3. Caracterización de vinaza de caña de azúcar antes de la etapa de concentración

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>unidades</td>
<td>4,4</td>
</tr>
<tr>
<td>DQO</td>
<td>mg O₂ L⁻¹</td>
<td>125,4</td>
</tr>
<tr>
<td>DBO_5</td>
<td>mg O₂ L⁻¹</td>
<td>50</td>
</tr>
<tr>
<td>DBO_5/DQO</td>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td>Fósforo total</td>
<td>mg L⁻¹</td>
<td>194</td>
</tr>
<tr>
<td>Nitrógeno total (NTK)</td>
<td>mg L⁻¹</td>
<td>888</td>
</tr>
<tr>
<td>Dureza total</td>
<td>mg CaCO₃ L⁻¹</td>
<td>1253</td>
</tr>
<tr>
<td>Fenoles</td>
<td>mg L⁻¹</td>
<td>442</td>
</tr>
<tr>
<td>Sólidos totales</td>
<td>mg L⁻¹</td>
<td>12,6</td>
</tr>
<tr>
<td>Sólidos volátiles totales</td>
<td>mg L⁻¹</td>
<td>2,6</td>
</tr>
<tr>
<td>Sólidos suspendidos totales</td>
<td>mg L⁻¹</td>
<td>715</td>
</tr>
<tr>
<td>Sólidos suspendidos volátiles</td>
<td>mg L⁻¹</td>
<td>192</td>
</tr>
<tr>
<td>Sólidos disueltos totales</td>
<td>mg L⁻¹</td>
<td>12,6</td>
</tr>
<tr>
<td>Pb</td>
<td>mg L⁻¹</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Cd</td>
<td>mg L⁻¹</td>
<td>< 0,04</td>
</tr>
<tr>
<td>Cu</td>
<td>mg L⁻¹</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Zn</td>
<td>mg L⁻¹</td>
<td>< 0,02</td>
</tr>
<tr>
<td>Cr</td>
<td>mg L⁻¹</td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

Fuente: Grupo de investigación GAOX (2011)
4.2 Tratamiento de vinazas

Wilkie et al. y Pant y Adholeya (2000; 2007) realizaron una revisión completa de las características de las vinazas provenientes de diferentes materias primas y su tratabilidad tanto a escala piloto como escala real. Los autores resaltan que las vinazas provenientes de mieles de caña de azúcar presentan los niveles más altos de DBO, DQO, DBO/DQO, potasio, fósforo y sulfato, mientras que las vinazas de jugo de caña presentan los valores más bajos. Por otro lado señalan que los altos valores de sulfatos en las mieles son el resultado de los procesos de sulfitación empleados en la producción de azúcar; esto impacta tanto los tratamientos (anaerobios) como su disposición, básicamente por alta concentración de H₂S en el biogás y generación de olores en la disposición del efluente. La relación DQO/So₄ no es lo suficientemente baja para inhibir la digestión anaerobia por toxicidad de sulfuros, aproximadamente (10), mientras lo reportado como inhibitorio es (0,5). Compuestos fenólicos (taninos y ácidos húmicos), melanoidinas formadas mediante la reacción de Maillard, caramelos de azúcares sobrecalentadas y furfurales producidos en la hidrólisis; son los responsables de la coloración de la vinaza y es sabido que estos compuestos inhibitorios del proceso fermentativo de la digestión anaerobia.

En las revisiones mencionadas arriba, los autores reportan que hay diferentes tipos de tratamiento de vinaza, tanto físico-químicos como biológicos. La separación mecánica permite recuperar sólidos suspendidos que contienen levaduras y otros componentes, estos componentes recuperados pueden ser secados y ser vendidos como pienso animal de alto valor nutricional. Los tratamientos posteriores a esta separación mecánica se ven favorecidos por este paso previo. La evaporación de vinaza es empleada como reductor importante de los volúmenes producidos, sin embargo esta concentración tiene una demanda energética equivalente al 10% de la energía contenida en el alcohol destilado. Por otro lado, la vinaza concentrada proveniente de mieles de caña, es vendida como pienso animal con una bajo nivel nutritivo, debido a sus efectos laxantes por el alto contenido de potasio. Un uso alternativa de las vinazas es la producción de proteína unicelular, en el cual un cultivo aerobio es responsable de remover las azúcares residuales y las proteínas solubles, disminuyendo así la DQO de la vinaza y generando un producto altamente nutricional como pienso animal. El cultivo de algas Spirullina máxima ha sido probado exitosamente, siendo un proceso de fácil cosecha, de alta productividad para pienso animal y de reducciones de DQO hasta del 74% en vinazas diluidas. En este mismo sentido, se ha estudiado la producción de compuestos biológicos como enzimas, quitosan, astaxantina, hormonas vegetales y biopolímeros, mediante cultivos biológicos de hongos que aprovechen los azúcares y proteínas de las vinazas.

Wilkie et al. (2000), mencionan que numerosos estudios en remoción de color han sido llevados a cabo, entre ellos floculación y coagulación, oxidación fotocatalítica y remoción microbiológica por bacterias y hongos. La remoción de color es fuertemente influenciada
por la digestión anaerobia de las vinazas. La remoción de color por procesos de floculación en vinazas digestadas llega hasta el 86% mientras que las mismas vinazas sin digerir, solo alcanzan un 2%. Situación similar se presenta en remoción de color por tratamiento biológico, donde la remoción es de 71% si la vinaza es previamente digestada, pero solo 50% si la vinaza no ha sido digestada previamente. Por otro lado, otras tecnologías han sido probadas como tratamientos térmicos y electroquímicos. Dentro de los tratamientos térmicos se ha estudiado la viabilidad de carbonizar la vinaza para su combustión y producción de vapor para uso en el proceso de destilación, encontrando que energéticamente es positivo, ya que se libera más energía que la necesitada en el tratamiento.

Los estudios más recientes sobre el tratamiento de vinazas, están enfocados en: mezcla de residuos como vinazas y cenizas para incentivar la actividad microbiológica en suelos con lombrices (Pramanik y Chung, 2011), remoción de color mediante tratamiento biológico (Romanholo Ferreira et al., 2011), remoción de color mediante procesos físico-químicos de adsorción (Devesa-Rey et al., 2011) y co-compostaje para enmienda de suelos (Bustamante et al., 2010).

4.3 Digestión anaerobia

La digestión anaerobia se caracteriza por la existencia de cuatro fases consecutivas, diferenciadas en el proceso de degradación del substrato: hidrólisis, acidogenénesis, acetogénesis y metanogénesis. Dentro de la primera fase, las bacterias hidrolíticas desdoblan los polímeros orgánicos (polisacáridos, proteínas y lípidos) hasta monómeros como ácidos grasos volátiles, alcoholes, entre otros. Las bacterias acidogénicas por su parte transforman los productos de la fase anterior en ácido acético y en compuestos intermedios como etanol, ácido láctico, ácido propiónico, ácido fórmico y ácido butírico. Los anteriores son transformados por las bacterias acetogénicas en acetato, hidrogénio y dióxido de carbono (estos dos últimos se producen en todas las etapas anteriores, pero en bajas cantidades). Por último los microorganismos metanogénicos producen metano a partir de acetato, hidrogeno y dióxido de carbono (Lee et al., 2009; Lozano et al., 2009). En la Figura 2 se observan los pasos de la transformación de la materia orgánica hasta metano (Pavlostathis y Giraldo-Gomez, 1991).

En todas las fases participan diferentes especies del dominio bacteria, pero en la metanogénesis solo intervienen organismos del dominio archaea (Lozano et al. 2009) (Figura 3). Aunque todas las fases pertenecen a una cinética de primer orden, las velocidades de reacción son diferentes para cada una de las fases de la digestión anaerobia y las comunidades presentan diferentes rangos de sensibilidad a cada compuesto intermedio como inhibidor (H_2, ácido acético o amoníaco producido en la acidogénesis de aminoácidos) (Aquino y Stuckey, 2008). La hidrólisis es la fase que presenta la menor velocidad de reacción en matrices orgánicas complejas y esto depende de cada sustrato, sin embargo la velocidad de reacción de las diferentes fases de la digestión anaerobia, podrían ser mejoradas con pretratamientos o procesos previos de acondicionamiento (da Costa Sousa et al., 2009). Dentro de los avances tecnológicos que se pueden destacar en la digestión anaerobia, está el desarrollo de reactores que aumentan la velocidad de reacción de aquellas fases que presenten limitaciones, mediante la reorganización ecológica de las comunidades en el reactor (Briones y Raskin, 2003).
4.3.1 Digestión anaerobia de vinazas

En 1979, ya se estudiaban diferentes tipos de disposición de vinazas (directa en suelo o indirectamente) y sistemas de tratamiento combinando procesos anaerobios y aerobios (Sheehan y Greenfield, 1980). En 1987, Segretain y Moletta (1987) reportan el mejoramiento en la metanización de AGV por micorganismos previamente adaptados vinazas de la industria vinícola. En la década de los 90s, de Bazúa et al. (1991) se encontraban estudiando acoplamientos de sistemas anaerobios de lecho fluidizado con sistemas aerobios para el pulimento del efluente. La digestión anaerobia de vinazas ha sido ampliamente estudiada, no obstante con la producción másiva de bioetanol, los grandes volúmenes de vinaza y el riesgo de contaminación, es necesario retomar la investigación y enfocar todos los esfuerzos en la mejoramiento de la producción de metano para su aprovechamiento energético.

Las vinazas o efluentes residuales de destilerías han sido estudiadas y tratadas de diferentes maneras: tratamientos aerobios (Cibis et al., 2007), tratamiento en suelo (Tejada et al., 2007), humedales construidos (Kerner y Rochard, 2004 citado por Ferreira, 2006), procesos de oxidación avanzada (Vlyssides et al., 1997; Zayas et al., 2007; Santana y Fernandes Machado, 2008; Lucas et al., 2009). No obstante, la digestión anaerobia sigue siendo la mejor alternativa para su tratamiento debido a la gran cantidad de materia orgánica biodegradable que éstas presentan. Los efluentes con relaciones de DBO/DQO entre 0,4 y 0,6; se consideran biodegradables (Torres, 2010). Las vinazas presentan generalmente una relación DBO/DQO superior 0,5 y los nutrientes necesarios para ser tratadas tanto en sistemas aerobios como anaerobios, siendo la digestión anaerobia la vía más adecuada por tener requerimientos energéticos más bajos y por la posibilidad del aprovechamiento del biogás como una fuente energética. Cabe mencionar que es necesario un acondicionamiento del efluente para su tratamiento biológico, ya que...
generalmente las vinazas salen de la destilería a temperaturas superiores a 70°C. La aplicación de pretratamientos antes de los sistemas biológicos puede mejorar la tasa de degradación de la materia orgánica, en el caso de la digestión anaerobia, un pretratamiento puede incrementar la producción de metano mediante la transformación de ciertos compuestos inhibitorios en otros menos inhibitorios.

Para las vinazas se podrían plantear alternativas de digestión anaerobia de rango termofílico, sin embargo Ferreira (2006) en su trabajo doctoral, obtuvo mejores conversiones de DQO en metano bajo condiciones mesofílicas. Las altas temperaturas de las vinazas podrían ser aprovechadas por las industrias mediante planes de eficiencia energética. Si bien la digestión mesófica puede ser más estable que la termofílica, ésta presenta tasas de conversión de la materia orgánica más bajas, ya que la temperatura es el principal catalizador de las reacciones biológicas, no obstante temperaturas por encima de cada rango (mesófico y termofílico) generará inestabilidad (Ferreira, 2006; Lindorfer et al., 2008). La velocidad de reacción es un aspecto importante para definir las dimensiones de los reactores y por tanto, la tecnología de reactor a proponer según la cantidad de residuo generado.

La digestión anaerobia representa una tecnología adecuada para la estabilización de los altos contenidos de materia orgánica, obteniendo dos productos con valor económico: biogás con alto contenido de metano y lodo anaerobio + efluente tratado que puede ser utilizado como fertilizante orgánico líquido en suelos, con una proporción más equilibrada de nutrientes en comparación con las vinazas cruces (Madejón et al., 2001), cabe mencionar que aplicación de lodo + efluente tiene que responder a un diseño previo de fertilización monitoreada.

4.4 FotoFenton

El proceso Fenton y Fotofenton son los POA´s más estudiados y con mayor número de publicaciones. El mecanismo de oxidación de estos procesos por el radical de mayor poder oxidativo (E= 2.8 V), el radical hidroxilo (OH•), es ampliamente aceptado, sin embargo el mecanismo exacto y la naturaleza de las especies oxidantes secundarias, todavía se encuentran bajo discusión (Malato et al., 2009).

A continuación se describen algunas generalidades del fundamento químico de acuerdo con lo descrito por (Malato et al., 2009):

El hierro es el cuarto elemento más abundante en la tierra y está presente en diferentes número de oxidación desde –II hasta +VI. En solución acuosa, la especie más abundante tiene número de oxidación +II (ion ferroso) y +III (ion férrico); las otras especies son muy inestables y tienen poca relevancia en el proceso. El ion férrico es la especie más crítica en el proceso FotoFenton, ya que este precipita a pH más bajo que el ion ferroso. A valores de pH entre 2.5 y 3 unidades, la especie predominante es el Fe⁺². Cabe anotar que la precipitación de Fe⁺³ es ascendente a partir de pH 3.5, pero también depende de la
la temperatura; a una mayor temperatura, se tendrá una mayor precipitación de Fe$^{3+}$. El ácido oxálico puede ser usado para redissolver el Fe$^{3+}$.

El peróxido de hidrógeno es descompuesto en agua y oxígeno en presencia de soluciones acuosas de iones de hierro. Mezclas de Fe$^{2+}$ y peróxido de hidrógeno, son llamados reactivos de fenton. Cuando el Fe$^{2+}$ es remplazado por Fe$^{3+}$ se llaman reactivos de FotoFenton. Si sustancias orgánicas como los contaminantes de aguas residuales están presentes en el sistema Fe$^{2+}$/Fe$^{3+}$/H$_2$O$_2$, estos reaccionarán de diferentes formas con el radical hidroxilo formado. Sin embargo en todos los casos, el ataque es electrofílico y la tasa de reacción está limitada por la difusión del radical. Los compuestos empezarán a ser degradados paso a paso conforme el radical sea generado y los compuestos sean atacados. No obstante, la mineralización total de matrices orgánicas complejas no tendrá lugar, ya que es conocido que los ácidos carboxílicos y dicarboxílicos forman complejos de hierro estables; estos complejos inhiben la reacción con peróxido y no permiten la degradación total. En las Ecuación 1 y Ecuación 2 se observan las dos reacciones principales de la generación de radicales en el proceso FotoFenton.

Ecuación 1. Generación de radical hidroxilo (OH•) por regeneración de Fe$^{2+}$

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^* \quad k = 53-76 \text{ M}^{-1} \text{ s}^{-1}$$

Ecuación 2. Generación de radical (HO$_2$•)

$$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2^- + H^+ \quad k = 1 - 2 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$$

Malato et al. (2009) describe seis parámetros importantes dentro de la operación del proceso FotoFenton:

pH

Muchos autores han propuesto que el pH óptimo para condiciones de operación es 2.8 unidades. Este pH ácido evita la precipitación del hierro además maximiza la concentración de complejos acuáticos tipo hierro (III) mono y dihidroxilado, los cuales absorben luz UV más eficientemente que los no hidroxilados. Sin embargo, debido a la naturaleza de tantos complejos orgánicos estudiados, este valor de pH ha sido cuestionado muchas veces y otros estudios reportan que un pH entre 4-5 unidades es suficiente para mantener el hierro (III) en suspensión.

Concentración de hierro y fuente del hierro

Es conocido que un aumento en la concentración de hierro incrementa la tasa de degradación presentada por el proceso FotoFenton. No obstante, en reactores solares (colectores) una alta concentración de hierro provocará zonas oscuras que reducirán la eficiencia de degradación del proceso. Por otro lado, ha sido reportado que aunque una alta concentración de hierro puede representar una barrera para los fotones, la fuente de...
los fotones, también puede mejorar la degradación en general. Longitudes de onda entre 300 y 400 nm, presentan una mejor degradación que las longitudes de onda más bajas (254-222 nm)

Influencia de la temperatura

La temperatura tiene una participación importante en el rendimiento del proceso, un incremento en la temperatura siempre ha tenido un efecto positivo sobre la cinética de reacción. Un incremento de hasta cinco veces en la tasa de reacción, puede ser esperado al incrementar la temperatura desde 20°C hasta 50°C. No obstante, es necesario tener presente que un incremento en la temperatura demandará una mayor adición de peróxido de hidrógeno, básicamente por una reducción de Fe$^{3+}$ sin producción de radicales hidroxilo. Lo mencionado anteriormente, es un punto para equilibrar en cada aplicación de Fotofenton: mayor tasa de degradación vs. mayor consumo de peróxido.

Longitud de onda de la irradiación, penetración de la luz e intensidad de la irradiación

Ha sido ampliamente estudiado que la luz solar es una excelente fuente de fotones, ya que se ha comprobado que entre mayor sea la longitud de onda de la irradiación, menor será el efecto provocado por los sólidos en suspensión de la muestra o agua residual. La luz solar puede proveer de una longitud de onda capaz de superar el apantallamiento de los sólidos sin presentar un consumo energético monetario. La penetración de la luz ha sido el factor de investigación y desarrollo de los colectores solares, éstos permiten un mejor flujo fotónico desde la radiación solar hacia el interior de la solución donde se presentan las reacciones de FotoFenton. Una adecuada penetración de la luz en fotoreactores continua siendo un reto, ya que es conocido que en aguas residuales se puede observar un incremento del color conforme se va degradando el material orgánico; este incremento de color, reduce la penetración de la luz y disminuye la tasa de degradación. Por último, la intensidad de la irradiación no ha sido muy estudiada, sin embargo se conoce que una mayor producción de fotones incidentes es obtenida cuando una menor intensidad de irradiación se ha aplicado por volumen de reacción.

Concentración del sustrato y características químicas

Muchos estudios han sido realizados alrededor de la concentración de los contaminantes, en todos los casos se ha observado que entre mayor sea la concentración de un contaminante, mayor será el tiempo requerido para su degradación. En el incremento de la concentración del contaminante no se tiene una relación directa con el tiempo requerido para la reacción, ya que entre más concentrada esté una solución, mayor contenido de sólidos en suspensión tendrá y por tanto mayor será el tiempo requerido para su degradación. Muy pocos estudios han sido enfocados al estudio de las características químicas de los compuestos a degradarse, sin embargo se sabe que compuestos que durante su oxidación liberan fosfatos, son compuestos que requerirán un mayor tiempo de reacción y una mayor adición de peróxido. Hay compuestos aromáticos que por su bajo peso electrónico, no presentan afinidad con los radicales hidroxilos formados y por tanto tienen una baja tasa de degradación. Debe tenerse en cuenta que en aguas residuales es muy difícil establecer estas características químicas de la reacción, ya que hay muchos
compuestos interactuando y su evidencia desde el punto de vista experimental es poco práctica.

Salinidad y concentración del oxidante (H₂O₂)

La salinidad es un factor que afecta la tasa de degradación de los procesos Foto-fenton, no obstante se sabe que estos procesos de oxidación siguen ocurriendo en concentraciones de sal tan altas como las presentes en el agua de mar. Por otro lado, este factor podría ser superado al trabajar con un pH ligeramente por encima de 3 unidades.

La concentración del peróxido en el rendimiento del proceso ha sido ampliamente estudiada, todos los estudios concluyen que no se puede aplicar ni una alta concentración, ni una baja concentración de peróxido. La concentración ideal, debe ser encontrada para cada compuesto o para cada matriz orgánica (agua residual), teniendo en cuenta que no se aumentará la tasa de degradación por aplicar más oxidante. De este modo, conociendo la concentración inicial de peróxido, se puede monitorear el peróxido para conocer el estado de la degradación del proceso. La eficiencia del oxidante respecto a lo teórico o estequeométrico es muy dependiente del sustrato y su concentración.

4.5 Ozono

El ozono es un poderoso agente oxidante (E° = 2.07 V) que puede reaccionar con la mayoría de especies químicas que poseen múltiples enlaces moleculares, sin embargo reacciona lentamente con compuestos con enlaces sencillos. El ozono es una especie altamente reactiva capaz de reaccionar con muchas especies al mismo tiempo, sin tener preferencia sobre algún compuesto en especial. De este modo, debe existir una vía de oxidación con ozono para cada sustrato (factores cinéticos propios de cada reacción), no obstante esto solo es posible determinarlo en sustancias puras (Gogate y Pandit, 2004)

De acuerdo con lo descrito por Gogate y Pandit (2004) hay siete parámetros operacionales que deben ser tenidos en cuenta en la ozonización:

pH del sistema

A altos valores de pH, el ozono reacciona casi que indiscriminadamente sobre todos los compuestos orgánicos e inorgánicos presentes en el sustrato. También es conocido que valores de pH (en la ozonización) por encima del valor pK del contaminante, no mostrará una gran degradación del compuesto.

Presión parcial del Ozono

Conforme aumenta la presión parcial del ozono, también aumenta la medida de degradación del compuesto, sin embargo el aumento de la presión parcial del ozono está usualmente asociado con un incremento sustancial en el costo de generación del ozono. Este es un punto importante a evaluar cuando se propone la oxidación de compuestos por
ozonización, por otro lado es más aconsejable garantizar una transferencia efectiva del ozono a la solución.

Tiempo y superficie de contacto

Se recomienda usar contactores que permitan incrementar tanto el tiempo como la superficie de contacto; el uso de agitadores estáticos ha sido una buena alternativa para este punto.

Presencia de radicales secuestrantes (scavengers)

El efecto ejercido por estos compuestos dependerá básicamente del mecanismo de oxidación. Si la degradación se da por ataque directo del ozono sobre los enlaces químicos, no habrá mayor perjuicio a la reacción; pero si el mecanismo es través de radicales libres, la presencia de radicales secuestrantes como iones HCO₃⁻ y sustancias húmicas disminuyen la eficiencia de degradación. Este punto es muy importante, ya que se espera que una gran variedad de efluentes contenga altas cantidades de las sustancias mencionadas.

Temperatura de operación

La temperatura tiene un doble efecto: incremento de la tasa de reacción y variación de la tasa de solubilidad del ozono. Altas temperaturas reducen la solubilidad del ozono, reduciendo la degradación de la materia orgánica. Sin embargo, es conocido que el incremento en la temperatura, incrementa significativamente la tasa de degradación de ciertos compuestos; para tener un doble efecto positivo con el incremento de la temperatura, se recomienda incrementar la presión parcial del ozono para recuperar la solubilidad.

Presencia de catalizador

Catalizadores como TiO₂ fijo, Fe (II), Mn (II) pueden ser usados para incrementar la eficiencia de degradación.

Combinación con otros procesos de oxidación

La ozonización puede ser efectivamente combinada con otros procesos de oxidación, tales como: radiación ultrasónica, radiación UV, radiación-γ, peróxido de hidrógeno, Fenton y procesos biológicos.

4.6 Acoples

El tratamiento de efluentes residuales con Procesos de oxidación avanzada (POA), es de gran importancia para el tratamiento de contaminantes tóxicos no biodegradables o poco biodegradables (Malato et al., 2009). Es ampliamente aceptado que los tratamiento biológicos son más económicos que los físico-químicos, no obstante la implementación de acoples POA-Biológico (especialmente digestión anaerobia), viabiliza el uso de un proceso físico-químico o pretratamiento, ya que mejora la eficiencia del proceso biológico,
disminuye los costos de construcción (reactores con cargas volumétricas mayores) y mejora el rendimiento de la producción de metano por la transformación de compuestos inhibitorios.

Malato et al. (2009), describen ocho pasos que se deben tener en cuenta al plantear una estrategia de tratamiento y el diseño de una planta que incluya un acople POA-Biológico.

1. Verificar si el agua residual o efluente es potencialmente tratable por POA’s y/o biológicamente.
2. Seleccionar la estrategia de funcionamiento, según las características de los efluentes (solo POA, POA-bio, bio-POA, solo bio o ningún tratamiento).
3. Si la opción POA-bio, fue seleccionada, se debe desarrollar y optimizar la estrategia de acople.
4. Realizar estudios a escala piloto y analizar las cinéticas de reacción.
5. Realizar el escalamiento teórico de la planta real.
6. Realizar el estudio económico.
7. Escoger el mejor desempeño para el POA.
8. Diseñar la planta real.

4.6.1 **POA’s + Digestión anaerobia**

El objetivo de un acople POA-bio, para producción de metano, es obtener materia orgánica más disponible para los microorganismos. Los POA’s, tienen la capacidad de mineralizar por completo la materia orgánica (Domènech et al., 2001), no obstante esto no se pretende en los acoples para metanización. El acople debe estar enfocado en la degradación parcial de la materia orgánica, para incrementar el rendimiento de la producción de volumen de CH₄/DQO añadida y disminuir así los tiempos de reacción o aumentar la velocidad de generación, según sea el caso. La mineralización de la materia orgánica por parte de los POA’s, tan solo generará una disminución de la cantidad de CH₄ y por tanto una baja en el rendimiento y potencial energético del residuo a valorar.

Los pretratamientos con POA’s, deben ser lo más selectivo posible, si bien los radicales oxidantes no hacen distinción entre la materia orgánica, la termodinámica de cada reacción dirigirá la degradación global y la generación de subproductos deseados o indeseados. Para esto es necesario escoger un pretratamiento adecuado y selectivo, para la transformación de compuestos presentes en otros más biodegradables. Siles et al. (2011), mencionan que la ozonización tiene una alta afinidad y selección por los fenoles (inhibidores de la metanogénesis), al oxidar los fenoles se obtienen subproductos que son fácilmente asimilables por las comunidades microbianas presentes en los procesos anaerobios. Los cambios en los componentes tóxicos no son necesariamente grandes cambios, pueden ocurrir cambios a nivel estructural en moléculas complejas, sustrayendo grupo orgánicos y volviendo así, el componente menos tóxico para los microorganismos o totalmente biodegradable (Malato et al., 2009). Estos cambios mencionados, no producen grandes remociones en el contenido orgánico (DQO o COT), lo cual representa una gran
ventaja, ya que no se desvaloriza el residuo por pérdida de materia orgánica, sino por el contrario se aprovecha toda la carga orgánica para la producción de metano.

4.6.2 POA´s + Digestión anaerobia + vinazas

No existen experiencias reportadas de acoples a escala real (ni piloto) de FotoFenton con Digestión anaerobia para vinazas. Sin embargo, la mayoría de los estudios realizados sobre acoples POA – bio, han sido realizados anteponiendo la digestión anaerobia o sistemas aerobios como una opción para reducir los costos del POA (bio – POA).

Se encuentran estudios reportados de cinéticas de oxidación de vinazas ozonizadas (Benitez, 2003; Lucas et al., 2009), degradación selectiva de polifenoles (Martín Santos et al., 2005), ozonización en medio alcalino y ácido (Martín Santos et al., 2003) e incremento de la biodegradabilidad de vinazas ozonizadas (Beltrán et al., 1999). Siles et al. (2011) reportan un incremento del 41.6% de la producción de metano en vinazas ozonizadas sin concentrar (10% de ST), respecto al 50% de incremento obtenido en vinazas ozonizadas concentradas (55% de ST).

4.6.3 Biogás y valorización de las vinazas

El proceso general, de la digestión anaerobia es llevada a cabo de manera simplificada en tanques sépticos, biodigestores tipo batch, reactores de mayor complejidad (UASB), reactores de alta tecnología (de lecho fluidizado), rellenos sanitarios municipales, entre otros (Awosolu, 2007). La tecnología del biogás es una opción que puede satisfacer la creciente demanda de energía de las zonas rurales de los países en desarrollo (Rubab y Kandpal, 1996). El biogás es un recurso energético versátil que puede tener diferentes usos, tales como cocción de alimentos, iluminación y generación potencia, entre otros.

El biogás es una mezcla de gases procedentes de la biodegradación anaerobia, cuyos componentes principales son el metano (CH₄), dióxido de carbono (CO₂) y trazas de ácido sulfhídrico (H₂S), las cuales pueden corroer las tuberías de conducción según la concentración del mismo (GTZ, 1999). Sus propiedades y composición se presentan a continuación en la Tabla 4.
La parte útil de la energía del biogás es el valor calorífico de su contenido de CH₄, los otros componentes poseen un contenido energético, pero ellos no participan en el proceso de combustión. Dicho valor calorífico es una función del porcentaje de CH₄ en el biogás, la temperatura y la presión absoluta. En la Tabla 5 se presentan los principales parámetros termodinámicos del CH₄ en condiciones normales.

Tabla 5. Parámetros termodinámicos del CH₄ en condiciones normales

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa Molar (M)</td>
<td>16,04 Kg/Kmol</td>
</tr>
<tr>
<td>Densidad</td>
<td>0,72 Kg/m3</td>
</tr>
<tr>
<td>Capacidad calorífica (cp)</td>
<td>2,165 KJ/Kg K</td>
</tr>
<tr>
<td>Valor calorífico (Hu)</td>
<td>50 MJ/Kg</td>
</tr>
<tr>
<td>Viscosidad</td>
<td>0,012 centipoise</td>
</tr>
<tr>
<td>Límite de inflamabilidad en aire</td>
<td>5,3-14% volumen</td>
</tr>
<tr>
<td>Relación Cp/Cv</td>
<td>1,307</td>
</tr>
</tbody>
</table>

Fuente: (GTZ, 1999).

La calidad del biogás depende del sustrato o materia prima empleada en la digestión anaerobia. En la Tabla 6, se detallan las características del biogás dependiendo del sustrato utilizado.
Tabla 6. Características del Biogás según la materia prima

<table>
<thead>
<tr>
<th>Componente</th>
<th>Residuos agrícolas</th>
<th>Lodos de depuradora</th>
<th>Residuos industriales</th>
<th>Gas de vertedero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metano</td>
<td>50-80%</td>
<td>50-80%</td>
<td>50-70%</td>
<td>45-65%</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>30-50%</td>
<td>20-50%</td>
<td>30-50%</td>
<td>34-55%</td>
</tr>
<tr>
<td>Agua</td>
<td>Saturado</td>
<td>Saturado</td>
<td>Saturado</td>
<td>Saturado</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>0-2%</td>
<td>0-5%</td>
<td>0-2%</td>
<td>0-1%</td>
</tr>
<tr>
<td>H2S</td>
<td>100-700 ppm</td>
<td>0,10%</td>
<td>0-8%</td>
<td>0,5-100 ppm</td>
</tr>
<tr>
<td>Amoníaco</td>
<td>Trazas</td>
<td>Trazas</td>
<td>Trazas</td>
<td>Trazas</td>
</tr>
<tr>
<td>Monóxido de carbono</td>
<td>0-1%</td>
<td>0-1%</td>
<td>0-1%</td>
<td>Trazas</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>0-1%</td>
<td>0-3%</td>
<td>0-1%</td>
<td>0-20%</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>0-1%</td>
<td>0-1%</td>
<td>0-1%</td>
<td>0-5%</td>
</tr>
<tr>
<td>Compuestos orgánicos</td>
<td>Trazas</td>
<td>Trazas</td>
<td>Trazas</td>
<td>5 ppm (terpenos, esteres, etc)</td>
</tr>
</tbody>
</table>

Fuente: (GTZ, 1999).

Las plantas de etanol a partir de caña de azúcar sufren de una carencia en la valoración de sus subproductos, especialmente las vinazas, las cuales son generadas en grandes proporciones y podrían ser bien aprovechadas (Nitayavardhana y Khanal, 2010).

Los sistemas de metanización ofrecen diferentes beneficios, tanto a sus usuarios como al ambiente, entre los más destacados se tiene: producción de energía en diferentes formas (calor, electricidad, combustión), reducción de patógenos, reducción de las emisiones de efecto invernadero y otras ventajas ambientales como protección contra la deforestación. Se ha calculado que 1 m³ de biogás utilizado para cocinar evita la deforestación de 0.335 hectáreas de bosques de un promedio de 10 años de vida (Raman et al., 1989).

De esta manera, la valoración de las vinazas como residuos altamente contaminantes, es proyectada desde el aprovechamiento del biogás producido. Awosolu (2007) propone los siguientes ítems como componentes claves para la valoración del biogás:

- Independencia de combustibles fósiles.
- Reducción de emisiones de efecto invernadero.
- Desarrollo rural y generación de valor agregado a la agro-industria.

Esta investigación es un punto de partida clave, para generar valor agregado a las vinazas de las destilerías de alcohol carburante en el Valle del Cauca y promover el uso de energías alternativas y el desarrollo rural.

5 MATERIAL Y MÉTODOS

Cabe anotar que las metodologías empleadas en esta investigación persiguen los objetivos del WP4 del proyecto de investigación “Sustainable Biofuels from Agricultural Residues in North-Andean Countries (SUBA),” liderado por la Escuela Politécnica de
Lausanne – EPFL. Los objetivos están relacionados con la viabilidad técnico-económica de los acoples POA’s-bio para la transformación de residuos agro-industriales en biogás. El montaje de los experimentos fue el resultado de ensayos previos del grupo de investigación GAOX en las áreas de Fotofenton (Isaza et al., 2010) y digestión anaerobia de vinazas pretratadas con Fotofenton (Gil-Molano et al., 2010). Los procesos de ozonólisis en vinazas son nuevos para el grupo de investigación y solo encontramos una referencia previa. En este trabajo se encuentran los primeros resultados del grupo en ozonización de vinazas y digestión anaerobia de estas.

5.1 **UBICACIÓN ESPACIAL**

Esta investigación fue realizada en el Campus Universitario de la Universidad del Valle, Edificio 336. Los procesos fotocatalíticos y los ensayos de producción de metano, se realizaron en el Laboratorio de Microbiología Ambiental a escala laboratorio.

5.2 **DESCRIPCIÓN DEL EXPERIMENTO**

Para esta investigación se empleo vinaza proveniente de la industria de alcohol carburante, esta vinaza fue sometida a dos tipos de pretratamiento, con el fin de aumentar la tasa de generación de metano por unidad de DQO. Posterior a los tratamientos, las vinazas se pusieron en contacto con diferentes inoculos microbianos en condiciones de digestión anaerobia.

En la Figura 4, se puede observar el planteamiento básico del proyecto.
5.2.1 Procedencia de las vinazas

Las vinazas utilizadas en esta investigación provinieron de la destilería del Ingenio Mayagüez S.A., ubicada en las cercanías del municipio de Candelaria, Valle del Cauca (Ver Figura 5). La destilería tiene una capacidad instalada de 150.000 L d\(^{-1}\) de alcohol carburante y un esquema de producción con una relación de 2 L de vinaza / 1 L de etanol anhidro (CENICAÑA, 2006). Bajo el esquema de producción de alcohol carburante mencionado anteriormente, se obtienen unas vinazas muy concentradas, conocidas como vinazas al 55% de sólidos totales. 60 L de vinaza fue colectada antes de la última etapa de concentración, el día 5 de Marzo de 2010. El uso de vinaza diluida se propuso debido a que no encontramos soportes que sugieran la factibilidad de digestión anaerobia de vinazas concentradas. Para este tipo de vinazas se requeriría de sistemas de biodigestión similares a los usados para lodos de depuradoras o biodigestores secos. Por otro lado, la concentración o evaporación de vinazas es un paso adicional usado por la industria, de alto consumo energético (aproximadamente el 10% de la energía del alcohol obtenido (Wilkie et al., 2000), el cual es cuestionado en la propuesta global del grupo de investigación GAOX. Todos los ensayos descritos en este documento emplearon alícuotas de la misma vinaza. La vinaza fue conservada en refrigeración (4\(^\circ\)C), hasta su etapa de pretratamiento.

![Figura 5. Ubicación espacial de la destilería del Ingenio Mayagüez](http://www.cenicana.org/pdf/otros/ruta_cenicana.pdf)

5.2.2 Caracterización de las vinazas

Las vinazas usadas en este estudio fueron caracterizadas en detalle en una fase anterior de la investigación como se muestra en el apartado de caracterización de vinazas, para esta fase el seguimiento se hizo usando los parámetros de Temperatura (86°C), DQO (150.600 mg L⁻¹), pH (4.57 unidades), ST (52.000 mg L⁻¹), según metodología APHA (2005). Cabe anotar que esta investigación está enfocada en evaluar la producción de metano en vinazas pretratadas bajo diferentes condiciones de Fotofenton y Ozono. Los parámetros básicos medidos permitieron responder a la hipótesis de investigación.

Antes de los pretratamientos se realizó una medición de DQO y pH y se alicuotó para los diferentes pretratamientos de FotoFenton y Ozono. Posterior a los pretratamientos y a la digestión anaerobia, nuevamente se midió DQO, y pH.

5.2.3 Pretratamiento de las vinazas

Las vinazas fueron pretratadas mediante dos POA’s: Fotofenton y Ozonolisis. Lo anterior con el objetivo de eliminar sustancias inhibidoras y aumentar la producción de metano. Cabe anotar que no se encontraron referencias previas para este tipo de acoples para aprovechamiento y valorización de vinazas.

Fotofenton

Para el pretratamiento de las vinazas con fotofenton, estas se diluyeron 50% v/v en agua destilada y se trataron 15 y 30 mL en reactores de 150 mL. Todo el experimento fotocatalítico se realizó en tandas, en un solo día y por duplicado. La radiación empleada fue de 80 W m⁻² emitida por un ATLAS Suntest® “Original” Heraues. La cantidad de materia orgánica usada fue 22.5 g DQO (sistema cerrado - tandas) para ambos tipos de vinaza, diluida y no diluida (DQO vinaza no diluida: 150,6 g L⁻¹ y DQO vinaza diluida: 75,4 g L⁻¹).

Figura 6. Equipo de radiación (suntest) empleado durante el pretratamiento con fotocatálisis

Para el pretratamiento con Fotofenton se realizó un experimento 3², con los siguientes factores:
- Tipo de vinaza: no diluida y diluida.
- Concentración de Peróxido de Hidrógeno \([\text{H}_2\text{O}_2]\): 0.5 mol L\(^{-1}\) y 1 mol L\(^{-1}\).
- Relación de peróxido / hierro \([\text{H}_2\text{O}_2/\text{Fe}^{3+}]\): 15 y 20.

Los niveles establecidos para la concentración del peróxido y la relación peróxido/hierro están de acuerdo con los resultados previos obtenidos por el grupo de investigación GAOX (Isaza et al., 2010). Todas las combinaciones de los niveles fueron realizados por duplicado y se contó con un blanco en oscuridad de cada combinación para evaluar la pertinencia de la radiación. El proceso de fotocatálisis se monitoreó usando como parámetro de seguimiento el potencial de Óxido-Reducción, el proceso fue detenido al desaparecer el \(\text{H}_2\text{O}_2\) (Isaza et al., 2010).

Ozonólisis

Los pretratamientos con ozono se realizaron en un reactor de contacto de flujo ascendente (Figura 7), con volumen útil de 1 L. El generador de ozono (Figura 7) empleado fue desarrollado por el grupo de investigación GRALTA de la Universidad del Valle, dentro de los objetivos del WP4. La capacidad de generación es de 55 mg \(\text{O}_3\) L\(^{-1}\).

Figura 7. Sistema de ozonización. A) Generador de ozono. B) Reactor de contacto

Los pretratamientos con ozono (2) se realizaron en tandas por duplicado con una concentración de 20 mg \(\text{O}_3\) L\(^{-1}\), tiempo de contacto de 0.5 h y 1 h y un flujo de stripping de 0.5 L min\(^{-1}\). Los tiempos de reacción mencionados anteriormente (30 y 60 mins) fueron seleccionados bajo un criterio de exploración que permitiera al grupo de investigación obtener los primeros resultados de ozono. Para el pretratamiento con ozono solo se emplearon vinazas sin diluir. La cantidad de materia orgánica usada fue 75 g de DQO (sistema cerrada - tandas) en un volumen útil de 500 mL (DQO vinaza no diluida: 149,2 g L\(^{-1}\)).

Dosis de Ozono (20 mg \(\text{O}_3\) L\(^{-1}\) x 0.5 L min\(^{-1}\) = 10 mg \(\text{O}_3\) min\(^{-1}\)):

1) 10 mg \(\text{O}_3\) min\(^{-1}\) x 30 min = 300 mg \(\text{O}_3\)
2) 10 mg \(\text{O}_3\) min\(^{-1}\) x 60 min = 600 mg \(\text{O}_3\)
Figura 8. Esquema de ozonización

En la Tabla 7 se observan los pretratamientos realizados con fotofenton y con ozono. La vinaza pretratada y la vinaza sin pretatar, se emplearon como sustrato en los experimentos de producción de metano.

Tabla 7. Nomenclatura del sustrato (vinazas), según el pretratamiento recibido

<table>
<thead>
<tr>
<th>FOTOFENTON</th>
<th>OZONO</th>
<th>SIN PRETRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin FF [0,5mol L⁻¹] (15)</td>
<td>Vin Oz 30´</td>
<td>Vin FF [0,5mol L⁻¹]</td>
</tr>
<tr>
<td>Vin FF [1mol L⁻¹] (15)</td>
<td>Vin Oz 60´</td>
<td>Vin FF [1mol L⁻¹]</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (15)</td>
<td></td>
<td>Vin D FF [0,5mol L⁻¹]</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (15)</td>
<td></td>
<td>Vin D FF [1mol L⁻¹]</td>
</tr>
</tbody>
</table>

Vin: Vinaza (35% de sólidos totales); Vin D: Vinaza diluida (50% v/v; agua destilada); FF: pretratada con Fotofenton; [H₂O₂] = 0.5 mol L⁻¹ y 1 mol L⁻¹; (H₂O₂/Fe³⁺) = 15 y 20; Oz: pretratada con Ozono; 30’ = tiempo de contacto; 60’ = tiempo de contacto.

5.2.4 Producción de metano

Inóculo

Para la producción de metano fueron empleados tres inóculos biológicos con el fin de comparar su producción de metano en los efluentes de los diferentes tratamientos (10). Dos inóculos fueron tomados de sistemas anaerobios en funcionamiento y un tercer inóculo fue compuesto a partir de los anteriores.
El inóculo IG (Inóculo Granular) fue tomado del reactor UASB de la central de sacrificio animal de CAVASA, ubicado en el municipio de Candelaria, Valle del Cauca. Inóculo granular, referente de digestión anaerobia en el Valle del Cauca por su alta eficiencia en la remoción de carga contaminante. En los gránulos de este tipo de inóculo se albergan microorganismos de todos los niveles tróficos involucrados en la digestión anaerobia. Los efluentes tratados por este reactor son aguas residuales con alto contenido de sangre bovina, por lo tanto rico en proteínas. La concentración de SSV fue de 90,16 g L⁻¹.

El inóculo IV (Inóculo Vinaza) fue tomado de una laguna anaerobia de alta mezcla, de la empresa Sucromiles S.A. ubicada en el municipio de Palmira, Valle del Cauca. El inóculo de este reactor presenta una característica floculenta debido a la alta mezcla que se presenta en su interior; este reactor trata vinazas al 10% de ST provenientes de la destilería de la fábrica de ácido cítrico de esta compañía. Este inóculo fue escogido por presentar preadaptación al sustrato, no obstante las vinazas de esta investigación presentan una concentración mayor de ST (55%). La concentración de SSV fue de 65,17 g L⁻¹.

El inóculo IGV (Inóculo Granular+Vinaza) fue compuesto mediante una mezcla 1:1 v/v, del inóculo IG e IV. La mezcla, fue propuesta con el objetivo de obtener traslapamientos ecológicos o selección de poblaciones microbiológicas. La concentración de SSV fue de 77,67 g L⁻¹.

Montaje experimental

A cada uno de los reactores del experimento (botellas de 120 mL) se les agregó una cantidad fija de materia orgánica (70 mg de DQO) teniendo en cuenta una relación de 2 mg DQO mL de reacción⁻¹, según lo recomendado por Conil (2005), en 34 mL de agua destilada (Alazard, 1991). Lo anterior se realizó teniendo en cuenta el siguiente cálculo:

\[
1 \text{ mL de vinaza} \rightarrow x \text{ mg DQO}
\]

\[
x \text{ mL de vinaza} \rightarrow 70 \text{ mg DQO}
\]

Posteriormente se agregó el inóculo en una relación de 0,41 DQO/SSV como lo recomienda Ferreira (2006) para el tratamiento de vinazas.

\[
70 \text{ mg DQO} / X = 0,41
\]

\[
x \text{ mg de SSV} \rightarrow 1 \text{ mL de inóculo}
\]

\[
171 \text{ mg SSV} \rightarrow x \text{ mL de inóculo}
\]

Para optimizar las condiciones de metanogénesis de arranque, a cada reactor se le agregó una solución de vitaminas (ver Tabla 8). Esta adición no se requiere en sistemas continuos, ya que los reactores pueden ser cargados paulatinamente. Las pruebas se
realizaron en ausencia de nutrientes ya que las vinazas son ricas en nitrógeno y fósforo (Tabla 1).

Tabla 8. Composición de la solución de vitaminas empleadas

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Concentración (mg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotina (vit. H)</td>
<td>2</td>
</tr>
<tr>
<td>Ácido para amino benzóico</td>
<td>0,5</td>
</tr>
<tr>
<td>Cianocobalamina</td>
<td>0,1</td>
</tr>
<tr>
<td>Tiamina, HCl (vit. B1)</td>
<td>5</td>
</tr>
<tr>
<td>Pantotenato de Calcio</td>
<td>5</td>
</tr>
<tr>
<td>Ácido Nicotínico</td>
<td>5</td>
</tr>
<tr>
<td>Piridoxina HCl (vit. B6)</td>
<td>10</td>
</tr>
<tr>
<td>Ácido Fólico</td>
<td>2</td>
</tr>
<tr>
<td>Rivoflavina</td>
<td>5</td>
</tr>
<tr>
<td>Ácido Lipóico</td>
<td>5</td>
</tr>
</tbody>
</table>

La combinación de todos los sustratos producto de los pretratamientos (Tabla 7) con los tres inóculos (IG, IV e IGV), conformaron el experimento de la producción de metano; en la Tabla 9 se observan las combinaciones.

Tabla 9. Pruebas de producción de metano, tratamientos del experimento

<table>
<thead>
<tr>
<th>Sustrato</th>
<th>Inóculo 1</th>
<th>Inóculo 2</th>
<th>Inóculo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin FF [0,5mol L⁻¹] (15)</td>
<td>Vin FF [0,5mol L⁻¹] (15) + Inóculo 1</td>
<td>Vin FF [0,5mol L⁻¹] (15) + Inóculo 2</td>
<td>Vin FF [0,5mol L⁻¹] (15) + Inóculo 3</td>
</tr>
<tr>
<td>Vin FF [1mol L⁻¹] (15)</td>
<td>Vin FF [1mol L⁻¹] (15) + Inóculo 1</td>
<td>Vin FF [1mol L⁻¹] (15) + Inóculo 2</td>
<td>Vin FF [1mol L⁻¹] (15) + Inóculo 3</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (15)</td>
<td>Vin D FF [0,5mol L⁻¹] (15) + Inóculo 1</td>
<td>Vin D FF [0,5mol L⁻¹] (15) + Inóculo 2</td>
<td>Vin D FF [0,5mol L⁻¹] (15) + Inóculo 3</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (20)</td>
<td>Vin D FF [0,5mol L⁻¹] (20) + Inóculo 1</td>
<td>Vin D FF [0,5mol L⁻¹] (20) + Inóculo 2</td>
<td>Vin D FF [0,5mol L⁻¹] (20) + Inóculo 3</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (15)</td>
<td>Vin D FF [1mol L⁻¹] (15) + Inóculo 1</td>
<td>Vin D FF [1mol L⁻¹] (15) + Inóculo 2</td>
<td>Vin D FF [1mol L⁻¹] (15) + Inóculo 3</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (20)</td>
<td>Vin D FF [1mol L⁻¹] (20) + Inóculo 1</td>
<td>Vin D FF [1mol L⁻¹] (20) + Inóculo 2</td>
<td>Vin D FF [1mol L⁻¹] (20) + Inóculo 3</td>
</tr>
<tr>
<td>Vin Oz 30’</td>
<td>Vin Oz 30’ + Inóculo 1</td>
<td>Vin Oz 30’ + Inóculo 2</td>
<td>Vin Oz 30’ + Inóculo 3</td>
</tr>
<tr>
<td>Vin Oz 60’</td>
<td>Vin Oz 60’ + Inóculo 1</td>
<td>Vin Oz 60’ + Inóculo 2</td>
<td>Vin Oz 60’ + Inóculo 3</td>
</tr>
<tr>
<td>Vin</td>
<td>Vin + Inóculo 1</td>
<td>Vin + Inóculo 2</td>
<td>Vin + Inóculo 3</td>
</tr>
<tr>
<td>Vin D</td>
<td>Vin D + Inóculo 1</td>
<td>Vin D + Inóculo 2</td>
<td>Vin D + Inóculo 3</td>
</tr>
</tbody>
</table>

Vin: Vinaza (35% de sólidos totales); Vin D: Vinaza diluida (50% v/v; agua destilada); FF: pretratada con Fotofenton; [H₂O₂] = 0.5 mol L⁻¹ y 1 mol L⁻¹; (H₂O₂/Fe³⁺) = 15 y 20; Oz: pretratada con Ozono; 30’ = tiempo de contacto; 60’ = tiempo de contacto.

Las botellas fueron inoculadas en anaerobiosis y el escape de gases se controló con anillos de aluminio sobre un tapón de caucho (Figura 10a). Todas las botellas fueron sometidas a desplazamiento de O₂ con N₂. El espacio de acumulación o *headspace* del biogás fue de 80 mL; las botellas fueron incubadas durante todo el tiempo a 35°C y con posición invertida. De esta manera, se generó un sello hidráulico hacia el tapón de caucho (Figura 10b).
En la Figura 9 se esquematiza lo comentado anteriormente para los montajes de producción de metano a escala laboratorio.

Figura 9. Descripción del montaje de las botellas para la producción de metano

Se realizaron 30 tratamientos, con 5 réplicas cada uno y con controles para cada sustrato y cada inóculo. Las unidades experimentales se mantuvieron a lo largo del experimento (70 días). No obstante, algunas de las réplicas eran dadas de baja al azar para analizar pH, DQO y obtener muestras para la extracción de DNA para análisis posteriores; a lo largo del experimento se extrajeron dos réplicas de cada tratamiento. Para el seguimiento se tomaron muestras diarias hasta el día 40 y una última el día 70.
Seguimiento de la producción de metano

La producción de metano fue realizada por medición directa de la concentración del mismo, en un volumen fijo extraído de las botellas según lo propuesto por Bhatta et al. (2007). El metano producido fue monitoreado usando cromatografía de gases (Shimadzu GC 14, FID). Se empleó una columna Carbowax 20M (3%), H₃PO₄ (1%) y supelco 80/100. Los picos de metano se detectaron alrededor de los 90 segundos, mediante el software Peak Simple 3.0. Las condiciones de operación del cromatógrafo fueron: H₂= 50 psi, Aire= 50 psi, carrier 1= 400 psi y carrier 2= 60 psi.

El gas de arrastre de ambos carriers fue Nitrógeno molecular (N₂).

Figura 10. a) Siembra en anaerobiosis. b) Forma de incubación

Figura 11. Cromatógrafo de gases Shimadzu GC-14 (Sistema de detección FID)
Las lecturas diarias de metano fueron realizadas por duplicado y completamente al azar. El volumen de inyección fue de 1 mL, se utilizó jeringa con válvula para gases.

Análisis de DQO:

Los análisis de DQO se realizaron bajo la técnica de espectrofotometría, según los standard methods (APHA, 2005). Las mediciones realizadas corresponden a las vinazas sin tratar, vinazas diluidas sin tratar, vinazas pretratadas y vinazas digeridas por la biodegradación anaerobia.

5.2.5 Seguimiento biológico de archaeas metanogénicas

Extracción de DNA

Para la extracción de DNA se seleccionaron los pretratamientos que presentaron las mayores producciones de metano, al igual que los que presentaron inhibición total (todas las extracciones corresponden a muestras tomadas al final del experimento) (ver Tabla 9). También se tuvo en cuenta la extracción de DNA de los inóculos (IG, IV e IGV) para su comparación.

Se seleccionaron 21 muestras en total para la extracción de DNA. Las extracciones se realizaron con el kit Power Soil DNA Isolation (Mo Bio Lab Inc.; catalog N° 12888-100 y lot N Ps10F14), bajo el protocolo del kit; un secado prolongado de alcohol fue adicionado antes de la elución del DNA. En la Tabla 10 se muestran los tratamientos de producción de metano empleados para la extracción de DNA.

Tabla 10. Tratamientos de producción de metano elegidos para análisis biológico

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>IG</th>
<th>IV</th>
<th>IGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (15)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (20)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vin FF [0,5mol L⁻¹] (15)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vin Oz 30’</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vin FF [1mol L⁻¹] (15)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (20)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (15)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Las muestras de los tres inóculos fueron tomadas y conservadas el día del montaje del experimento de producción de metano. Las muestras de los tratamientos de producción de metano fueron tomadas al final de la última medición de metano (día 70).
La concentración de DNA fue medida con un espectrofotómetro Shimadzu UV 1800 a una longitud de onda de 260nm. El cálculo de la concentración se realizó mediante la siguiente ecuación.

Ecuación 3. Concentración de DNA

Concentración de DNA (ng µL-1) = Absorbancia a 260 nm * Factor de Absorbancia (50 µg mL-1) * Factor de dilución (1.000)

Las extracciones de DNA fueron corroboradas mediante electroforesis en gel de agarosa al 2.4%.

La extracción de DNA permite extraer el material genético de cada uno de los grupos de microrganismos que estuvieron presentes en la muestra para su posterior análisis.

Amplificación por PCR

El DNA extraído fue amplificado por PCR con un termociclador Multigen de Labnet International Inc. Para la amplificación se utilizaron primers específicos para archaeas metanogénicas del fragmento de gen 16S rRNA de metanogénicas (Watanabe et al., 2006). 1106F (5’- TTW AGT CAG GCA ACG AGC -3’) y 1378R (5’- TGT GCA AGG AGG GAC -3’); el primer 1106F tuvo adherida una cola de GC (5’- CGC CCG CCG CGC CGC GG GGG GCA CGG GGG G -3’). El fragmento a amplificar tiene una longitud aproximada de 320 pb incluyendo la cola de GC. En la Tabla 11 se observa el detalle de los reactivos empleados para la amplificación por PCR. La Tabla 12 muestra el programa de PCR utilizado, modificado de Watanabe et al. (2006).

Tabla 11. Especificaciones del Cocktail de PCR

<table>
<thead>
<tr>
<th>Reactivo</th>
<th>Concentración Inicial</th>
<th>Concentración final</th>
<th>Volumen (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20 molecular</td>
<td>-----</td>
<td>-----</td>
<td>16,3</td>
</tr>
<tr>
<td>Buffer A</td>
<td>10X</td>
<td>1X</td>
<td>2,5</td>
</tr>
<tr>
<td>MgCl2</td>
<td>50mM</td>
<td>2mM</td>
<td>1</td>
</tr>
<tr>
<td>DNTPs</td>
<td>5mM</td>
<td>0,2mM</td>
<td>1</td>
</tr>
<tr>
<td>Primer 1106F</td>
<td>10uM</td>
<td>1uM</td>
<td>1</td>
</tr>
<tr>
<td>Primer 1378R</td>
<td>10uM</td>
<td>1uM</td>
<td>1</td>
</tr>
<tr>
<td>Taq</td>
<td>5U/µL</td>
<td>1U</td>
<td>0,2</td>
</tr>
<tr>
<td>ADN</td>
<td>---</td>
<td>---</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Los productos de PCR fueron corridos en gel de agarosa al 2.4% por electroforesis horizontal. Los geles fueron teñidos con bromuro de etidio y visualizados en transiluminador UV. Los productos PCR que cuya amplificación fue positiva, fueron almacenado a -20°C para su posterior separación por DGGE.

La técnica de amplificación por PCR es utilizada para aumentar el número de copias de una secuencia de interés, en un grupo biológico en particular. Como resultado se obtiene un producto de PCR que contiene múltiples copias de la secuencia de interés, de cada uno de los organismos del grupo biológico estudiado.

Separación de productos PCR por DGGE

La técnica se realizó con un DCode system de BioRad. Las características de corrida se describen a continuación:

- 16 horas de corrida
- 100 voltios constantes
- temperatura 60°C
- Gel de acrilamida
- Soluciones denaturantes 40% y 60%.

El gel de DGGE fue teñido con tinción de plata por 30 minutos y visualizado en transiluminador UV.

La técnica de DGGE permite separar en un medio denaturante, las diferentes copias de la secuencia de interés amplificada por PCR. La separación de copias se visualiza en forma de bandas.
5.3 **ANÁLISIS FINANCIERO DEL NIVEL DE PERFIL DEL USO DE BIOGÁS A PARTIR DE LA METANIZACIÓN DE VINAZAS**

Se realizaron búsquedas de información en fuentes primarias y secundarias: se consultaron revistas especializadas, libros, estudios técnico-económicos, entre otros. Además se realizaron entrevistas con expertos y gerentes de destilerías.

Para el conocimiento de la situación actual de las destilerías en el Valle del Cauca y su gestión con las vinazas, se recurrió a diferentes entes tanto gubernamentales como privados: tales como la Corporación Autónoma Regional del Valle del Cauca – CVC, el Centro de Investigación de la Caña de Azúcar de Colombia – Cenicaña, la Asociación de Cultivadores de Caña de Azúcar – ASOCAÑA, la Planta de Alcohol de Manuella S.A. y a Biotec International como empresa experta en producción de biogás. Para consolidar el análisis financiero fue necesario consultar fuentes secundarias, como proveedores nacionales e internacionales y empresas especializadas en proyectos energéticos. La información recolectada sirvió para conocer de manera general las demandas energéticas de los grupos industriales de la caña de azúcar y los recursos energéticos que podrían ser reemplazados por la utilización del biogás. También fue necesario conocer los precios de los energéticos a nivel industrial en el Valle del Cauca, éstos sirvieron para establecer los costos de oportunidad.

Para realizar el análisis del nivel de perfil de este estudio, como parte fundamental de la viabilidad del proceso de pretratamiento de vinazas, fue preciso determinar los costos de puesta en marcha, operación y mantenimiento de una planta de biogás. Se construyeron flujos de caja proyectados, los cuales incluyen VAN, TIR y el tiempo de recuperación de la inversión.

A partir de la recolección de la información mencionada arriba y bajo el supuesto de inversión propia, se determinó la rentabilidad de la inversión de capital. Para realizar el análisis de la viabilidad económica, se tomó como base técnica la propuesta de aprovechamiento del biogás en la agroindustria de la caña de azúcar (Conil, 2005).

5.3.1 **LOS POA’s **COMO UN INCREMENTO EN LAS VENTAS (AHORROS) EN LA METANIZACIÓN DE VINAZAS

Para considerar el pretratamiento de vinazas con POA’s como una adicionalidad económica en la generación y aprovechamiento de biogás, se compararon los valores de producción de metano esperados en el estudio de Conil (2005) con la producción de metano obtenida en este experimento. Ante la imposibilidad de realizar toda la etapa de prefactibilidad del proyecto con los resultados de metano obtenidos en este estudio (no es posible emplear estos valores sin contar con una escala piloto), se realizó una tabla comparativa considerando el aumento de la producción de metano como un excedente en las ventas o costos de oportunidad del proyecto. Por lo anterior, no fueron incluidos los costos de inversión, ni de operación del sistema POA de pretratamiento. Los excedentes de ventas (costos de oportunidad), se realizaron bajo el supuesto del mejoramiento de la
tasa de producción de metano; esto permite realizar un análisis financiero del nivel de perfil. Para finalizar la etapa de prefactibilidad del proyecto, se requiere la información que generará la siguiente etapa (escala piloto).

6 RESULTADOS Y DISCUSIÓN

6.1 Pretratamiento de vinazas con Fotofenton

A partir de la vinaza caracterizada (parámetros descritos en la metodología), se realizó el experimento de pretratamiento con Fotofenton con dos tipos de vinazas: no diluidas y diluidas.

Tabla 13. Reducciones de materia orgánica en los experimentos de fotofenton, en términos de DQO.

<table>
<thead>
<tr>
<th>Pretratamiento</th>
<th>DQO inicial (g L⁻¹)</th>
<th>desviación estandar (g L⁻¹) (n=3)</th>
<th>DQO final (g L⁻¹)</th>
<th>desviación estandar (g L⁻¹) (n=3)</th>
<th>% de Remoción de DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin FF [0,5mol L⁻¹] (15)</td>
<td>151</td>
<td>7,4</td>
<td>87</td>
<td>5,3</td>
<td>42</td>
</tr>
<tr>
<td>Vin FF [1mol L⁻¹] (15)</td>
<td>151</td>
<td>7,4</td>
<td>78</td>
<td>6,2</td>
<td>48</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (15)</td>
<td>75</td>
<td>5,5</td>
<td>34</td>
<td>1,1</td>
<td>55</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L⁻¹] (20)</td>
<td>75</td>
<td>5,5</td>
<td>37</td>
<td>2,3</td>
<td>51</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (15)</td>
<td>75</td>
<td>5,5</td>
<td>12</td>
<td>1,7</td>
<td>84</td>
</tr>
<tr>
<td>Vin D FF [1mol L⁻¹] (20)</td>
<td>75</td>
<td>5,5</td>
<td>32</td>
<td>4,3</td>
<td>58</td>
</tr>
</tbody>
</table>

*Se realizaron blancos (sin radiación) para cada una de las combinaciones de los factores, ninguno superó el 4% de remoción por tanto la degradación es atribuida al proceso fotofenton.

En la Tabla 13, se observa que los porcentajes de remoción de materia orgánica fueron más representativos en vinazas con concentraciones bajas de DQO (todos los pretratamientos tuvieron la misma cantidad de materia orgánica, ver capítulo 5.2.3). La remoción de materia orgánica de las vinazas diluidas y no diluidas alcanzó valores máximos de remoción de 84% y 47% respectivamente. Lo anterior responde a que las eficiencias de remoción de la materia orgánica en los POA´s, están determinadas por la cantidad de materia orgánica a oxidar y que entre mayor sea el contenido de materia orgánica, mayor será el tiempo y los reactivos necesitados para la mineralización o degradación de los compuestos de interés (Malato et al., 2009). Además, de acuerdo con los procesos termodinámicos de los POA´s, la degradación de la materia orgánica ocurrirá en primera instancia sobre los compuestos más sencillos o de fácil degradación (Chen y Pignatello, 1997). Por otro lado, también es importante anotar que las vinazas no diluidas presentan el doble de contenido de sólidos totales en comparación con las diluidas (dilución 50%; v/v, agua destilada); un alto contenido de sólidos totales generalmente está relacionado con una alta concentración de DQO, de la cual una fracción será recalcitrante.
con dificultad para ser removida tanto por procesos químicos como biológicos (Wageningen-UR, 1987). Un alto contenido de sólidos también desfavorece las reacciones fotocatalíticas, al impedir la excitación electrónica de los reactivos, básicamente por fenómenos de Scattering (dispersión o apantallamiento) (Pareek et al., 2003; Mozia et al., 2005). Cabe anotar que durante la oxidación avanzada de matrices orgánicas de alta complejidad como la vinaza, siempre habrá formación de nuevos productos como resultado de la oxidación parcial de los compuestos predecesores. Estos nuevos productos químicos pueden ser inhibidores de los mismos procesos de oxidación (impiden la excitación de electrones) o de los biológicos posteriores (compuestos tóxicos o inhibidores); esta situación es frecuente en sustratos altamente concentrados. El monitoreo de nuevos productos formados no fue realizado en esta investigación, pero podrán ser incluidos en la escala piloto posterior a esta investigación.

Los POA’s degradan rápidamente el material soluble (sólidos disueltos), el material suspendido (sólidos suspendidos) presenta resistencia a la oxidación y ejerce una demanda de oxígeno (DQO) que se considera fuerte y difícil de remover, debido a la heterogeneidad del medio (Yadvika et al., 2006). Todo lo anterior se resume en bajas eficiencias de remoción en efluentes altamente concentrados como las vinazas no diluidas.

Las altas concentraciones de sólidos totales tampoco favorecen el proceso de Fotofenton por la baja difusión que se presenta de O₂ al medio. En la Ecuación 4 se presenta una de las reacciones químicas de generación de radicales hidroxilo (OH•) que ocurre en presencia de oxígeno; en ausencia de oxígeno no se presentará esta reacción, disminuyendo así la cantidad de radicales OH• disponibles y por tanto la eficiencia de remoción de materia orgánica.

Ecuación 4. Reacciones de generación de OH• con O₂

\[H_2O_2 + O_2^{-} \rightarrow ^{\cdot}OH + OH^- + O_2 \]

Fuente: (Malato et al., 2009).

Santana y Fernandes (2008) no encontraron degradación de materia orgánica al exponer directamente las vinazas a la radiación solar como proceso fotolítico y los blancos del experimento no presentaron degradaciones superiores al 4%, ésto comprueba que las degradaciones presentadas ocurrieron por el proceso de FotoFenton y no solo por el proceso Fenton.

Como se observa en la Tabla 13, el factor más influyente sobre la degradación fotocatalítica es la concentración de H₂O₂, ya que ambos tipos de vinazas (no diluida y diluida) presentaron las mayores remociones de DQO en los pretratamientos que tenían alta concentración de peróxido (1 mol L⁻¹). También es necesario tener en cuenta que un alto contenido férrico, lo cual se traduce en una baja relación \([H_2O_2/Fe^{3+}]\), mejora la tasa de producción de radicales OH• y por tanto aumenta la degradación de la materia
orgánica (Torrades et al., 2003); este factor también se observa en los resultados de la Tabla 13.

Las remociones de materia orgánica (DQO) de la mayoría de los pretratamientos (no mayor a 67%) están de acuerdo con lo revisado por Malato et al. (2009). El autor describe que los tratamientos con fotofenton han sido exitosos en concentraciones de DQO desde 10 mg L⁻¹ hasta 25 mg L⁻¹. Aunque la concentración de DQO en las vinazas es mucho superior, debe tenerse en cuenta que el objetivo de este pretratamiento no era mineralizar la materia orgánica, sino volverla más biodegradable y por tanto obtener una mayor producción de metano.

Altas concentraciones de sulfatos SO_4^{2-} y compuestos halogenados tienden a formar complejos moleculares con los catalizadores, alterando su actividad (generación de radicales hidroxilo) y promoviendo la formación de radicales menos reactivos (de Laat et al., 2004). Es ampliamente conocido que las vinazas presentan un alto contenido de SO_4^{2-} (proceso de sulfitación del jugo de caña) (Tabla 1), de esta manera, las vinazas diluidas presentan menor cantidad de SO_4^{2-}, disminuyendo así la generación de complejos inactivantes. Las bajas tasas de generación de radicales de alto poder oxidativo (radical hidroxilo OH⁺) y las bajas eficiencias de remoción de materia orgánica, podrían ser mejorados mediante la adición de aniones inorgánicos (oxidantes), disminuyendo los costos de operación y el dimensionamiento de los reactores.

De acuerdo a lo mencionado anteriormente, la baja remoción de DQO en las vinazas no diluidas pretratadas con Fotofenton se debe a la alta concentración de sólidos totales (Pareek et al., 2003; Mozia et al., 2005), baja difusión de O₂ y alto contenido de SO_4^{2-} (Malato et al., 2009).

6.2 Pretratamiento de vinazas con Ozono

A partir de la vinaza caracterizada (parámetros descritos en la metodología), se realizó el montaje del pretratamiento con Ozono, solo se tuvo en cuenta vinaza no diluida. La ozonización en medio ácido representa una desventaja para el proceso de pretratamiento, esto a su vez repercute en la aplicación de la ozonización en vinazas. De Schepper et al. (2009) reportan que en residuos altamente concentrados, el ozono tiene una mejor reducción de DQO cuando es aplicado a pH 11 que cuando se aplica a pH neutro. Esta situación es conocida, no obstante la neutralización y/o el incremento del pH hasta 11 unidades en vinazas de una producción de alcohol carburante es poco viable por los altos volúmenes producidos y el alto costo que representarían los alcalinizantes requeridos. La ozonización a pH natural (4.57 unidades) fue pensada con la finalidad de evaluar el desempeño de este pretratamiento en condiciones reales y estimar su pertinencia en la producción de metano.
Tabla 14. Reducciones de materia orgánica en el pretratamiento con ozono, en términos de DQO.

<table>
<thead>
<tr>
<th>Pretratamiento</th>
<th>DQO inicial (g L⁻¹)</th>
<th>desviación estandar (g L⁻¹) (n=2)</th>
<th>DQO final (g L⁻¹)</th>
<th>desviación estandar (g L⁻¹) (n=2)</th>
<th>% de Remoción de DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin Oz 30’</td>
<td>149,2</td>
<td>6,7</td>
<td>52,3</td>
<td>5,6</td>
<td>64,9</td>
</tr>
<tr>
<td>Vin Oz 60’</td>
<td>149,2</td>
<td>6,7</td>
<td>73,2</td>
<td>4,7</td>
<td>50,9</td>
</tr>
</tbody>
</table>

Las bajas eficiencias de remoción de materia orgánica por parte del pretratamiento de Ozono, están de acuerdo con lo reportado por Martin et al. (2003), donde la ozonización de vinazas en medios ácidos (las vinazas no fueron neutralizadas, pH= 4.57 unidades), no presentan altas tasas de remoción, sino que solo presentan transformación de los compuestos presentes; lo anterior favorece este tipo de investigaciones con ozonización, ya que para la metanización solo se busca la transformación de la materia orgánica en compuestos más bio-asimilables y sin degradación de la materia orgánica; entre más carbono orgánico exista en el medio, más CH₄ se podrá producir.

Por otro lado, debe considerarse como una ventaja, el hecho que el ozono realice una transferencia de masa más efectiva (diluido y en columnas de contacto) respecto al proceso FotoFenton (Machuca-Martinez, 2010). Esto podría ser una de las explicaciones a los resultados observados en la Tabla 13 y Tabla 14, donde las eficiencias de remoción fueron más altas para los pretratamientos con ozono, respecto a las vinazas no diluidas pretratadas con FotoFenton.

En la Tabla 14 se observa una mejor eficiencia de remoción por parte de la menor dosis de ozono (300 mg O₃) respecto a la dosis alta (600 mg O₃). No existen referencias comparativas para estos datos, ya que Martin Santos et al. (2005) solo ozonizaron la vinaza por 15 minutos, encontrando que la DQO se mantiene prácticamente estable. Por otro lado, De Schepper et al. (2009) encontraron que la reducción de la DQO sigue una cinética de primer orden con la concentración de O₃, no obstante los investigadores emplearon altas concentraciones desde 500 mg O₃ L⁻¹ hasta 2000 mg O₃ L⁻¹ y esta investigación contó con 20 mg O₃ L⁻¹. Cabe mencionar que se busca implementar pretratamientos con costos modestos que no inviabilicen económicamente el acople, altas concentraciones de ozono como las mencionadas arriba requieren de un generador de alta potencia y por lo tanto un elevado precio de elaboración o de adquisición.

6.3 Producción de metano

6.3.1 Análisis estadístico

Para una interpretación clara de los resultados, se procedió con estadística descriptiva para observar las tendencias poblacionales y con análisis univariado para las tendencias muestrales. En la Tabla 15 se presenta un resumen de las producciones de metano de todos los montajes a lo largo del experimento (día 70 = último día). La Tabla 15 se
encuentra organizada por promedios aritméticos, desviaciones estándar y número de unidades experimentales; basadas en la lectura final (día 40. No hubo diferencia entre la producción de metano del día 40 y 70). Durante el experimento se eliminaron unidades experimentales al azar, para obtención de muestras para pH DQO, AGV (investigaciones futuras) y DNA (ver 5.2.4 Producción de metano).

Tabla 15. Resumen de la producción de metano de los tratamientos

<table>
<thead>
<tr>
<th>Sustrato</th>
<th>Inóculos</th>
<th>Media (CH$_4$ mL) ± DS</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin D</td>
<td>IG</td>
<td>12,6 ± 0,1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>10,4 ± 0,9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>11,8 ± 0,2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>11,8 ± 1</td>
<td>8</td>
</tr>
<tr>
<td>Vin</td>
<td>IG</td>
<td>11,3 ± 0,6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>11,4 ± 0,8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>11,2 ± 0,8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>11,3 ± 0,6</td>
<td>9</td>
</tr>
<tr>
<td>Vin D FF [1mol L$^{-1}$] (20)</td>
<td>IG</td>
<td>20,5 ± 0,2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>0 ± 0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>0 ± 0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>5,1 ± 9,5</td>
<td>8</td>
</tr>
<tr>
<td>Vin D FF [1mol L$^{-1}$] (15)</td>
<td>IG</td>
<td>0 ± 0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>0 ± 0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>0 ± 0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>0 ± 0</td>
<td>9</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L$^{-1}$] (20)</td>
<td>IG</td>
<td>22 ± 0,9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>17,9 ± 0,32</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>18,5 ± 1,1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>19,5 ± 2,1</td>
<td>9</td>
</tr>
<tr>
<td>Vin D FF [0,5mol L$^{-1}$] (15)</td>
<td>IG</td>
<td>20,8 ± 0,7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>18,2 ± 0,6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>21 ± 3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>20,1 ± 1,9</td>
<td>7</td>
</tr>
<tr>
<td>Vin FF [1mol L$^{-1}$] (15)</td>
<td>IG</td>
<td>18 ± 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>12,9 ± 0,3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IGV</td>
<td>14,8 ± 0,4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>15,3 ± 2,4</td>
<td>8</td>
</tr>
<tr>
<td>Vin FF [0,5mol L$^{-1}$] (15)</td>
<td>IG</td>
<td>18,6 ± 0,5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>16,7 ± 2,3</td>
<td>2</td>
</tr>
</tbody>
</table>
En la Tabla 15, se puede observar que los valores más bajos (media estadística) de la producción total de metano (mL CNPT; 40 días) fueron presentados por las pruebas de producción de metano cuyo sustrato era vinaza sin pretratamiento; un comportamiento similar se observó en ambos pretratamientos y para los tres inóculos. Esto demuestra que los pretratamientos con Fotofenton y Ozono mejoran la producción de metano en vinazas, transformando los compuestos orgánicos presentes en las vinazas, en compuestos más bio-asimilables y/o biodegradables.

Por otra parte, el tratamiento que mayor producción de metano presentó fue el tratamiento: Vin D FF [0.5 mol L\(^{-1}\)] (20) + IG (22mL). También se observa que el pretratamiento Vin D FF [1 mol L\(^{-1}\)] (15) produjo inhibición total o muerte de los microorganismos de los tres inóculos. Situación similar se presentó con el pretratamiento Vin D FF [1 mol L\(^{-1}\)] (20), el cual produjo la misma situación en los inóculos IV e IGV; no obstante el IG con este sustrato presentó una producción de metano (20,5 mL) 1,3 veces superior al promedio total del IG (en todas las pruebas) y 1,6 veces superior al promedio total de todas las pruebas de producción de metano. En la Tabla 13 se observa que la mayor degradación de DQO la presentaron los pretratamientos con alta concentración de peróxido (1 mol L\(^{-1}\)), no obstante esta condición fue desfavorable para la producción de metano, llegando incluso hasta inhibir por completo el proceso anaerobio (ver capítulo 6.3.3).

Todas las pruebas de producción de metano que presentaron inhibición total o muerte de microrganismos (ver capítulo 6.3.3), como se menciona arriba, presentaron bajo pH. El sustrato Vin D FF [1 mol L\(^{-1}\)] (15) presentó pHs (unidades) de: 3,4; 3,1 y 3, para los inóculos IG, IV e IGV respectivamente. El sustrato Vin D FF [1 mo L\(^{-1}\)] (20) presentó pHs
(unidades) de: 7,3; 4,9 y 4,5, para los inóculos IG, IV e IGV respectivamente. Se puede observar que una baja concentración de hierro (alta relación H₂O₂/Fe⁺³) inhibe menos el proceso anaerobio y por tanto los pHs no son tan bajos como los presentados en por el sustrato con alta concentración de hierro (baja relación H₂O₂/Fe⁺³). En ambos sustratos se observa un mejor comportamiento en términos de pH por parte del IG; este inóculo resistió a las condiciones generadas por parte del sustrato Vin D FF [1 mo L⁻¹] (20), de este modo logró generar metano a partir de ese nuevo sustrato (ver capítulo 6.3.3).
Tabla 16. Remoción de DQO de las pruebas de producción de metano

<table>
<thead>
<tr>
<th>Prueba de Biodegradabilidad</th>
<th>DQO final (mg L⁻¹)</th>
<th>Desviación estandar (mg L⁻¹)</th>
<th>Eficiencia de remoción de DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin D FF 0,5 mol L⁻¹ + IG</td>
<td>7.009</td>
<td>250</td>
<td>79</td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹ + IG</td>
<td>5.838</td>
<td>232</td>
<td>84</td>
</tr>
<tr>
<td>Vin FF 0,5 mol L⁻¹ + IG</td>
<td>25.612</td>
<td>2.320</td>
<td>71</td>
</tr>
<tr>
<td>Vin Oz 30° + IG</td>
<td>16.199</td>
<td>589</td>
<td>69</td>
</tr>
<tr>
<td>Vin FF 1 mol L⁻¹ + IG</td>
<td>25.236</td>
<td>2.067</td>
<td>68</td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹ + IG</td>
<td>6.960</td>
<td>311</td>
<td>78</td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹ + IG</td>
<td>13.200</td>
<td>389</td>
<td>-7</td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹ + IV</td>
<td>10.645</td>
<td>362</td>
<td>69</td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹ + IV</td>
<td>11.995</td>
<td>358</td>
<td>67</td>
</tr>
<tr>
<td>Vin FF 0,5 mol L⁻¹ + IV</td>
<td>32.411</td>
<td>4.346</td>
<td>63</td>
</tr>
<tr>
<td>Vin Oz 30° + IV</td>
<td>23.853</td>
<td>3.987</td>
<td>54</td>
</tr>
<tr>
<td>Vin FF 1 mol L⁻¹ + IV</td>
<td>41.319</td>
<td>4.426</td>
<td>47</td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹ + IV</td>
<td>32.100</td>
<td>3.505</td>
<td>-2</td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹ + IV</td>
<td>14.260</td>
<td>431</td>
<td>-16</td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹ + IGV</td>
<td>6.843</td>
<td>254</td>
<td>80</td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹ + IGV</td>
<td>11.040</td>
<td>374</td>
<td>70</td>
</tr>
<tr>
<td>Vin FF 0,5 mol L⁻¹ + IGV</td>
<td>27.831</td>
<td>2.104</td>
<td>68</td>
</tr>
<tr>
<td>Vin Oz 30° + IGV</td>
<td>21.563</td>
<td>2.132</td>
<td>59</td>
</tr>
<tr>
<td>Vin FF 1 mol L⁻¹ + IGV</td>
<td>35.439</td>
<td>3.236</td>
<td>55</td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹ + IGV</td>
<td>32.900</td>
<td>3.047</td>
<td>-4</td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹ + IGV</td>
<td>12.800</td>
<td>398</td>
<td>-4</td>
</tr>
</tbody>
</table>

En la Tabla 16 se observan las eficiencias de remoción de DQO por parte de los tratamientos del experimento de producción de metano, se puede apreciar que la eficiencia de remoción guardó relación con la generación de metano; así, los pretratamientos que más metano generaron fueron los que mayor remoción de DQO presentaron. En los sustratos Vin D FF [1 mol L⁻¹] (15) y (20) hubo inhibición en la producción de metano (Tabla 15), adicionalmente se presentó una eficiencia negativa de DQO para estas mismas pruebas de producción de metano. Esto se explica por una remoción de DQO nula y por un pequeño incremento en la DQO final, ejercida por el inóculo (lodo) adicionado.

En la Figura 12 se puede observar la esquematización de los datos presentados en la Tabla 15, mediante gráfico de cajas y alambres de manera individual para los sustratos e inóculos. El IV presentó una mejor distribución de sus datos por ser una mezcla de los inóculos IG e IV; una adecuada distribución de datos evidencia una producción de metano estable aún bajo diferentes características del sustrato. Lo anterior permite pensar que éste es un inóculo robusto, ya que podrá soportar variaciones fuertes en el proceso de metanización. Al ser una mezcla de inóculos, tiene características biológicas de dos sistemas de tratamiento totalmente diferentes, esto aporta una ventaja ecológica al nuevo inóculo para soportar variaciones en el sustrato o stress por sobre carga (Briones y Raskin, 2003; Nettmann et al., 2008). Por otro lado, el IG presenta una mediana superior
a la presentada por los inóculos IV e IGV, comprobando su potencial metanogénico. La distribución de datos del IG, permite evidenciar que la mayor parte de sus datos se encuentran cerca del percentil 75, lo cual se traduce en una alta producción de metano en la mayoría de tratamientos en los que se evaluó este inóculo.

Figura 12. Diagramas de cajas y alambres para los factores sustrato e inóculo

Dentro de los análisis estadísticos se realizó una prueba de análisis de varianzas de dos vías, teniendo como factores Sustrato e Inóculo y como variable dependiente la producción total de metano (mL CNPT).

La ANOVA mostró que existen diferencias significativas entre las varianzas de la muestra y evidenció que hay interacción entre los factores evaluados \((p<0,05)\). Lo anterior, confirma la influencia positiva (significativamente) de los pretratamientos con POA´s en la metanización de vinazas. Como se mencionó, existe una interacción entre ambos factores (sustrato e inóculo); de esta manera, se comprueba la importancia de desarrollar inóculos capaces de degradar matrices orgánicas complejas como las vinazas, ya que un buen inóculo sumado a los efectos positivos generados por los pretratamientos con POA permitirá obtener una mejor producción de metano. Las especializaciones tróficas de los inóculos dependen del tipo de sustrato a digerir y de las condiciones ambientales en los que se encuentran (Watanabe et al., 2009); de este modo, el desarrollo de inóculos debe estar enfocado a incluir factores tanto de preadaptación al sustrato (IV) como de alta organización biológica (IG).

A partir de las diferencias significativas observadas, se procedió a realizar un análisis de Postanova – Tukey. En la Tabla 17, se observa la jerarquización de los sustratos en términos de producción de metano.
Tabla 17. Análisis de Tukey para los sustratos

<table>
<thead>
<tr>
<th>Sustrato</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tukey</td>
<td>9</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α=0,05</td>
<td>8</td>
<td>5,1125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin D FF 1 mol L⁻¹</td>
<td>9</td>
<td>10,9111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin Oz60°</td>
<td>9</td>
<td>11,2889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹</td>
<td>8</td>
<td>11,7625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin FF 1 mol L⁻¹</td>
<td>8</td>
<td>15,2625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin Oz30°</td>
<td>8</td>
<td>16,4125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin FF 0,5 mol L⁻¹</td>
<td>8</td>
<td>17,9125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹</td>
<td>9</td>
<td>19,4667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin D FF 0,5 mol L⁻¹</td>
<td>8</td>
<td>20,1143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1,000</td>
<td>1,000</td>
<td>0,761</td>
<td>0,367</td>
<td>0,086</td>
<td>0,065</td>
<td>0,941</td>
<td></td>
</tr>
</tbody>
</table>

La Tabla 17 destaca las producciones de metano (mL CNPT) de los sustratos Vin D FF[0,5 mol L⁻¹](15) y Vin D FF[0,5 mol L⁻¹](20) (20,1 mL y 19,5 mL respectivamente) y muestra que no hay diferencias significativas entre ellos (p=0,941). A partir de estos resultados, el mejor pretratamiento es Vin D FF[0,5 mol L⁻¹](20), ya que fue el sustrato de mayor producción de metano (19,5 mL) y es la opción más económica de las dos mencionadas, puesto que emplea una concentración baja de hierro (relación alta de H₂O₂/Fe⁺³). Otro pretratamiento potencial es Vin FF[0,5 mol L⁻¹](15), ya que éste se puede aplicar directamente sobre vinazas después de la etapa de recirculación (antes de concentración) (Figura 1), sin necesidad de diluir. En el esquema de producción del alcohol carburante se podría proponer eliminar la recirculación y la concentración de vinaza, bajo un esquema de producción: 1 L de EtOH / 13 L de vinazas. De esta manera, se podrá tener un sustrato como el empleado en esta investigación: vinaza diluida. Con esto, las destilerías ahorrarían grandes cantidades de energía eléctrica, ya que la concentración consume un 10% del contenido energético del alcohol producido (Wilkie et al., 2000). Por otro lado, las vinazas estarían en mejores condiciones para un pretratamiento con FotoFenton a bajas concentraciones de H₂O₂.

En la Tabla 15 se puede observar que las mayores producciones de metano se obtuvieron con los sustratos pretratados (Fotofenton) con una baja concentración de H₂O₂ (0,5 mol L⁻¹) (pruebas de producción de metano), a diferencia de lo presentado en la Tabla 13, donde se observa que las mayores eficiencias de remoción de materia orgánica fueron presentadas por los pretratamientos de vinaza con una alta concentración de H₂O₂ (pretratamiento de vinazas). Esto está de acuerdo con los objetivos de esta investigación, donde no se pretende mineralizar la materia orgánica, sino solo transformarla para obtener una mayor producción de metano. Altas concentraciones de peróxido pueden mineralizar en mayor proporción la materia orgánica, aumentando la eficiencia de remoción (Tabla 13), pero disminuyendo la cantidad de materia orgánica disponible para su transformación en metano (Tabla 15). Como también fue mencionado, las altas concentraciones de H₂O₂ ocasionaron inhibición y/o muerte, esto también influye sobre la producción de metano en las vinazas no diluidas (ver capítulo 6.3.3).
A partir de lo comentado anteriormente, al emplear una vinaza no diluida se obtiene un menor rendimiento de CH4/DQO adicionado. No obstante, esto no es suficiente para determinar que la vinaza diluida o no recirculada es la mejor opción de tratamiento, ya que se debe evaluar los volúmenes de vinaza que se producen bajo ambos esquemas (diluidas y recirculadas). Para esto, es necesario un análisis técnico en una escala piloto que de soporte a la alternativa que representa el mejor panorama: no recircular (mayor producción de metano, pero mayor volumen de vinaza a tratar) o recircular (menor producción de metano, pero menor volumen de vinaza a tratar).

Cabe anotar que no hubo diferencias significativas ($p=0.086$) entre Vin Oz 30˚ y Vin FF[0.5 mol L$^{-1}$](15). De este modo, el pretratamiento Vin Oz 30˚ representa otra alternativa para el pretratamiento de vinazas sin diluir, teniendo en cuenta que podría ser una opción atractiva para las destilerías que quieran conservar su esquema de producción con recirculación de vinaza. Por otro lado, es importante mencionar que un pretratamiento con Ozono es más económico que uno con FotoFenton, debido a la simplicidad del reactor usado en ozonización y a un menor costo en los reactivos empleados. El grupo GRALTA de la Universidad del Valle está en condiciones de desarrollar ozonizadores para este tipo de aplicaciones a escala industrial, esto también representa una ventaja para la propuesta tecnológica del grupo de investigación GAOF, ya que este desarrollo local lograría disminuir considerablemente los costos de la tecnología.

Las reducciones de DQO con ozono no fueron muy notables (Tabla 14) no obstante, no se conoce la remoción de compuestos fenólicos que se pudo haber presentado. Los pretratamientos con ozono representan una gran ventaja para el mejoramiento de la producción de metano, ya que transforman los compuestos fenólicos presentes, volviendo más biodegradable la vinaza y sin disminuir demasiado la carga orgánica (Martín Santos et al., 2005). Lo observado en la Tabla 15 está de acuerdo con los resultados de Martín Santos (2003; 2005), ya que la degradación de la materia orgánica fue baja (DQO) pero se mejoró la producción de metano (respecto a la vinaza sin pretratar). Aunque, no se midieron fenoles ni DBO, es clara la evidencia que se mejoró la producción de metano con el pretratamiento de ozono y que los resultados están de acuerdo a lo reportado en la literatura.

La ozonización parcial es a menudo preferida sobre la mineralización total, ya que esto reduce los costos de aplicación de ozono. Por otro lado una baja dosis de ozono resulta en una máxima remoción de DQO y de toxicidad (de Schepper et al., 2009). Fernández-Alba (2002) encontraron en sus experimentos que una alta oxidación puede causar un incremento en la toxicidad de las aguas residuales. Ledakowicz et al. (2006) mencionan que no se debe buscar la mayor degradación, sino reducir la toxicidad y/o aumentar la DBO o fracción orgánica biodegradable. La producción de metano de las vinazas pretratadas con ozono están de acuerdo con lo mencionado anteriormente. La menor dosis de ozono presentó mejor producción de metano respecto a la dosis alta de ozono, esto tiene un doble efecto positivo en la aplicación de este pretratamiento, ya que aumentará la metanización de la vinaza y reducirá los costos del pretratamiento. Cabe mencionar que aunque no se realizaron pruebas de toxicidad (no era el objetivo), la
producción de metano debe ser interpretada como prueba del mejoramiento de la biodegradabilidad de las vinazas pretratadas. Es importante continuar investigando sobre el mejoramiento de la metanización en vinazas ozonizadas e incluir vinazas diluidas o tomadas antes de la etapa de recirculación de vinaza en las etapas posteriores a este trabajo.

En la Tabla 18, se muestran la distribución de los subconjuntos establecidos mediante la prueba de tukey en términos de las medias de metano producido (mL CNPT), por los inóculos evaluados.

Tabla 18. Análisis de Tukey, para los inóculos

<table>
<thead>
<tr>
<th>Inóculos</th>
<th>N</th>
<th>Subconjuntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tukey IV</td>
<td>26</td>
<td>10,542</td>
</tr>
<tr>
<td>α=0,05</td>
<td>28</td>
<td>11,807</td>
</tr>
<tr>
<td>IG</td>
<td>29</td>
<td>15,269</td>
</tr>
<tr>
<td>Sig.</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

El análisis de tukey destaca al IG, con las medias más altas de producción de metano; siendo todos los inóculos diferentes significativamente. Esto ratifica que el IG es el mejor en términos de producción de metano, no obstante no es fácil considerar este tipo de inóculo dentro de una tecnología de metanización de vinazas pretratadas, ya que el lodo granular con toda su organización microbiológica solo se puede obtener bajo condiciones particulares de proceso (Schmidt y Ahring, 1996), como las encontradas en el sistema de tratamiento de donde procede. La composición de inóculos (mezcla de varios inóculos) cobra gran importancia, en el sentido que un biodigestor para metanización de vinazas generalmente tiene más de 5,000 m³ de volumen útil y la biomasa o inóculo en estos biodigestores es aproximadamente el 30% de su volumen (1.500 m³). El IGV (segundo mejor según prueba de Tukey) es una muy buena opción para el tratamiento de vinazas pretratadas, ya que puede ser generado a partir de un inóculo con alta organización ecológica (IG) y de un inóculo preadaptado y abundante (IV).

El IGV representa una alternativa novedosa y llamativa, ya que reúne características importantes de ambos inóculos: potencial metanogénico (IG) y adaptación al sustrato (IV). En las figuras de distribución de medias (IG) y en la tabla resumen de producción de metano (Tabla 15) se observa cualitativamente que es justamente un valor medio entre los dos inóculos que lo conforman. Desde el punto de vista microbiológico y operacional de sistemas anaerobios, este tipo de inóculo representa una buena alternativa, ya que posee comunidades microbiológicas adaptadas a diferentes sustratos y condiciones operativas, lo anterior puede representar una respuesta positiva ante determinadas condiciones de estrés operacional o de tipo sustrato.

6.3.2 Cinéticas de producción de metano

En la Figura 13, Figura 14 y Figura 15 se presentan las producciones acumuladas de metano de los tratamientos destacados en el análisis estadístico de Tukey. Cada figura representa un inóculo diferente. En ninguno de los tres inóculos se observan diferencias significativas entre el día 40 y el 70 como lo visto en ensayos previos por Gil-Molano et al. (2010). En estas figuras se observa claramente que la producción acumulada más alta la presentó el IG, seguido del IGV. Estos inóculos presentaron el mismo patrón de jerarquización en la producción de metano en términos de pretratamiento; organizándose en orden descendente de la siguiente manera: Vin D FF[0.5 mol L\(^{-1}\)](20), Vin FF[0.5 mol L\(^{-1}\)](15), Vin Oz30’, Vin D y VinND. Para el IV, se presentó una ligera variación en el orden jerárquico de las vinazas sin pretratamiento respecto al IG: Vin D FF[0.5 mol L\(^{-1}\)](20), Vin FF[0.5 mol L\(^{-1}\)](15), Vin Oz30’, Vin y Vin D. La descripción anterior de las figuras confirma la importancia del pretratamiento de vinazas y la influencia de las características de cada pretratamiento en la producción de metano.

![Figura 13. Variaciones del volumen de metano acumulado durante 70 días, con el IG](image)

En la Figura 13, se observa las tendencias de acumulación de metano presentadas por los pretratamientos con el IG. Los tres pretratamientos, describen tendencias similares con un incremento temprano de la producción de metano (alrededor del día 10), una etapa de acumulación lenta (entre el día 20 y 30 aproximadamente) y una etapa final de incremento de la acumulación entre el día 30 y 40. Es importante describir estas situaciones como posibles comportamientos operacionales al escalar este tipo de acopla...
y para entender los mecanismos de la degradación de la materia orgánica en sustratos pretratados con POA’s y su posterior metanización. Estos cambios en la velocidad de producción de metano, deberán ser estudiados en detalle, ya que estas características podrían ser optimizadas en sistemas de digestión anaerobia de dos fases.

Figura 14. Variaciones del volumen de metano acumulado durante 70 días, con el IV

En la Figura 14, se observa que el IV tuvo un comportamiento diferente al IG (Figura 13). Sin embargo, se observa mucha uniformidad en la generación de metano y un ligero incremento en la acumulación de metano por parte de la vinaza no diluida sin pretratamiento. Lo anterior refleja la importancia de la preadaptación al sustrato, ya que este inóculo provino del tratamiento de vinaza de Sucromiles S.A.
Variaciones del volumen de metano acumulado durante 70 días, con el IGV

El IGV, como se evidencia en la Figura 12 y Figura 15 y en la Tabla 15 y Tabla 18, presenta un comportamiento intermedio (datos de producción de CH₄) entre el IG y el IV. Con este inóculo, los sustratos de vinazas pretratadas mostraron un comportamiento similar al IG: fases rápidas y lentas (cortas) durante el proceso. Sin embargo, los cambios en la acumulación fueron más suaves, esto puede ser explicado por la presencia de comunidades biológicas del IV.

En la Figura 16 y Figura 17, se presenta la linealización de las curvas de producción de metano, mediante la cinética de Chen Hashimoto citada por Linke (2006). Para esta cinética, se tiene en cuenta la producción diaria de metano y la producción máxima. Según el autor, la producción máxima (Ym) es obtenida mediante la regresión lineal de las producciones diarias vs. el tiempo de generación, llevando el tiempo hasta infinito. Para este caso se estimó el valor de la producción máxima (Ym), considerando una remoción de la DQO del 95% y una tasa de generación igual a 0,35 mLCH₄/CNTP / mgDQO removida.

\[
\text{DQO}_{removida} = 70\% 95\% = 66,5 \text{ mg DQO}_{removida} \\
\text{Ym} = 24,6 \text{ mLCH}_4
\]

Las pendientes (k) de la ecuación se obtuvieron mediante la regresión de Y/(Ym-Y) vs. Tiempo de generación. Para la linealización se tuvieron en cuenta todos los datos de acumulación hasta el día 40; los R² de las vinazas sin pretratar no son altos y la ecuación de línea recta no describe bien la producción de metano de éstas. Caso contrario sucedió.
con la generación de metano a partir de vinazas pretratadas que presentaron buena significancias de R^2. Lo anterior está influenciado por valores altos de producción en las vinazas pretratadas con tendencia hacia Y_m.

Las pruebas de producción de metano presentadas en las Figura 16 y Figura 17, corresponden a los tres mejores tratamientos en cuanto a producción de metano (Tabla 17) y sus respectivos comparativos (vinaza sin pretratamiento). Las cinéticas de producción están separadas por vinazas diluidas (Figura 16) y no diluidas (Figura 17).

![Figura 16. Cinéticas de producción de metano, para las vinazas diluidas, tanto pretratadas como sin pretratar. A) IG, B) IV y C) IGV.](image)

La Figura 16 muestra las gráficas linealizadas de la producción de metano para el pretratamiento Vin D FF [0.5 mol L$^{-1}$] (20) y su comparación con la vinaza diluida sin pretratamiento para los tres inóculos. Se observa la diferencia de pendientes o tasas de generación de metano (k) que se encontró para cada inóculo, siendo para el pretratamiento Vin D FF [0.5 mol L$^{-1}$] (20): IG (0,14 d$^{-1}$) > IGV (0,09 d$^{-1}$) > IV (0,08 d$^{-1}$). En
Esta figura también se puede apreciar el efecto positivo del pretratamiento con fotofenton, ya que se observa un incremento en la tasa de producción de metano de 366%, 350% y 166% para los inóculos IV, IGV e IV respectivamente.

Figura 17. Cinéticas de producción de metano, para las vinazas diluidas, tanto pretratadas como sin pretratar. A) IG, B) IV y C) IGV

La Figura 17 muestra las cinéticas de producción de metano de las vinazas no diluidas, tanto pretratadas con fotofenton y ozono, como no pretratadas. Se puede observar que no hay diferencia entre las tasas de producción de metano de los diferentes inóculos para el pretratamiento Vin FF [0.5 mol L⁻¹] (15) (0.07 d⁻¹); caso contrario a lo sucedido en el pretratamiento con ozono: IGV (0.09 d⁻¹) > IG (0.08 d⁻¹) > IV (0.07 d⁻¹).
Las vinazas no diluidas pretratadas (fotofenton y ozono) presentaron un incremento en la tasa de producción de metano respecto a la vinaza (no diluida) no pretratada, lo cual confirma el aumento de la biodegradabilidad de las vinazas mediante POA’s y está de acuerdo con lo reportado para Ozono por Siles et al. (2011). Los incrementos fueron del 350%, 300%, 250%, 133% y 133% para los tratamientos Vin Oz 30´+IGV, Vin Oz 30´+IG, Vin FF [0.5 mol L\(^{-1}\)] (0.5) +inóculo (IV e IGV), Vin Oz 30´+IV y Vin FF [0.5 mol L\(^{-1}\)] (0.5)+IV respectivamente. Para las vinazas no diluidas la mejor combinación la presenta Vin Oz 30´+IGV (k=0,09 d\(^{-1}\)), como se mencionó anteriormente, no hay diferencias significativas entre el pretratamiento Vin Oz 30´ y Vin FF [0.5 mol L\(^{-1}\)] (15) para la producción de metano (Tabla 17). Lo anterior es un buen resultado para la implementación de generadores de ozono (tecnología colombiana) en el pretratamiento de residuos industriales para el mejoramiento de su metanización y así, aprovechar su potencial energético.

Los mejoramientos en la producción de metano por parte de los pretratamientos con FotoFenton, pueden ser explicados mediante la generación de compuestos carboxílicos y dicarboxílicos que no logran mineralizarse, debido a su alta estabilidad, pero de alta biodegradabilidad (Malato et al., 2009). Por otro lado, los procesos FotoFenton generan ácido acético y oxálico (fácilmente metanizables) como compuestos finales de ciertas degradaciones. Según Kavitha y Palanivelu (2004), estos compuestos son degradados por completo después de 120 minutos de reacción, lo cual excede el tiempo de oxidación para los pretratamientos con fotofenton. Lo reportado por los autores mencionados, pueden ser una explicación para el mejoramiento de la producción de metano con los POA’s y queda dentro de los parámetros a tenerse en cuenta en la siguiente etapa de investigación (escala piloto).

6.3.3 Inhibición de la producción de metano

La inhibición de la producción metano presentada en los tratamientos Vin D FF [1 mol L\(^{-1}\)] (20 y 15) observada en la Tabla 15, podría explicarse a partir de otras evidencias experimentales reportadas en la literatura. Es ampliamente conocido que la toxicidad de un compuesto puede aumentar durante el proceso de oxidación con POAs. Malato et al. (2009) mencionan que compuestos intermediarios pueden ser más tóxicos que sus compuestos predecesores, cuando las reacciones son llevadas a cabo por un largo tiempo, de este modo la toxicidad de un proceso de oxidación no puede ser predecible sin evidencia experimental. Los autores también mencionan que ciertos compuestos intermediarios producidos durante la oxidación, pueden ser tóxicos para ciertos microorganismos y no para otros. Esto explica el comportamiento de inhibición observado en el tratamiento de producción de metano Vin D FF [1 mol L\(^{-1}\)] (20), donde todos los tratamientos con los inóculos IV e IGV fueron inhibidos completamente. El IG resistió ante los posibles compuestos inhibitorios generados durante la oxidación de las vinazas, esto puede ser explicado por el alto grado de organización biológica de este inóculo (granular) que le permitió adaptarse al tóxico o inhibidor y alcanzar una buena producción de metano (20 mL).
Otros autores también exponen el incremento de la toxicidad durante la oxidación de compuestos orgánicos. Sauer et al. (2006) emplearon varios POA’s para la oxidación de aguas residuales de una curtiembre, removiendo hasta el 60% de la DQO y eliminando los principales contaminantes, no obstante las pruebas de toxicidad con Artemia salina demostraron que la toxicidad de este efluente había incrementado posterior a la oxidación avanzada. Por otro lado, Rodríguez et al. (2011) estudiaron la degradación de la nicotina con reactivos de fenton, alcanzando degradaciones de COT hasta un 60%. Los autores reportan que en las etapas iniciales de la oxidación avanzada, algunos tóxicos intermedios se generaron; por ejemplo cuando se obtuvo una conversión del 80% para la nicotina y un 10% de la remoción de COT, la toxicidad llegó a ser 15 veces mayor que la presentada por la solución inicial. Andreozzi et al. (2011) estudiaron la degradación del 2-4-diclorofenol y del 3-4-diclorofenol con Fe(III)/O2. Estos encontraron que las soluciones tratadas de 2-4-diclorofenol fueron menos tóxicas en algas (*Pseudokirchneriella subcapitata*) que las soluciones de este compuesto sin tratar. No obstante, observaron que durante la oxidación de la solución de 3-4-diclorofenol, aparecieron compuestos tóxicos que inhibieron totalmente el crecimiento de las algas, especialmente en los tiempos de oxidación 20 y 60 minutos.

Esta situación también fue analizada desde otra perspectiva, la cual se basó en los mecanismos de desinfección reportada para los POA’s. Los POA’s han sido ampliamente utilizados tanto para la oxidación de aguas residuales como para la desinfección de agua potable. Vale la pena anotar que los inóculos no estuvieron expuestos directamente a los pretratamientos POA’s, no obstante los reactivos residuales y subproductos del proceso de oxidación avanzada, quedan contenidos en el sustrato a ser metanizado (vinazas pretratadas). Malato y et al. (2009) describen las diferentes sustancias reactivas o residuales y/o factores que influyen en el proceso de muerte celular enfocado a la desinfección: tipo de desinfectante, naturaleza de los microorganismos, concentración del desinfectante, tiempo de contacto, pH Temperatura. Los agentes bactericidas causan daños secuenciales: atacando primero la pared celular, membrana celular (externa e interna), diferentes organélos de la célula, DNA, moléculas, etc. Una rápida salida de los iones potasio de las células por ruptura celular, ha sido reportado por Saito et al. (1992) como uno de los efectos bactericidas; esto desequilibra la capacidad de homeostasis de la célula, dejándola más vulnerable a otros ataques y llevando finalmente a la muerte celular.

La Figura 18 ejemplifica otra hipótesis de lo sucedido en las pruebas de producción de metano con los pretratamientos *Vin D FF* [1 mol L⁻¹] (15) y *Vin D FF* [1 mol L⁻¹] (20). En ésta se observa el efecto y la entrada de peróxido (posible residual) a la célula por rupturas en la pared y membrana celular o por aumento en la permeabilidad de la membrana debido a cambios osmóticos. Cuando el H₂O₂ penetra las células podrá reaccionar con un reservorio de Fe celular (*Labil Iron Pool*, por sus siglas en Inglés) generando nuevos radicales hidroxilos que generarán daños irreversibles a las células y daño al DNA (Kakhlon y Cabantchik, 2002).

62
Figura 18. Daño celular en A: Vin D FF [1 mol L⁻¹] (20) y B: Vin D FF [1 mol L⁻¹] (15)

Como ha sido mencionado arriba, una baja relación de H₂O₂/Fe³⁺ implica una alta concentración de Fe (III). En la Figura 18B se puede observar que una alta concentración de Fe genera un desequilibrio en la capacidad homeostática de la célula (Kakhlon y Cabantchik, 2002) facilitando la entrada de compuestos químicos que afectarán irreversiblemente la célula. En la Figura 18A se observa que el riesgo al daño celular es más bajo a bajas concentraciones de Fe. En un exceso de Fe, el proceso de producción de radicales hidroxilos por Fenton seguirá ocurriendo y el riesgo al daño celular será evidentemente mayor respecto a bajas concentraciones de Fe. En el caso de la inhibición de la producción de metano presentada en este estudio, se asume pudo ser causada por una alta concentración de H₂O₂, una alta concentración de Fe y un bajo pH (pH natural de las vinazas) (4,57 unidades), lo anterior, representa una carga bactericida lo suficientemente fuerte como para inhibir o causar muerte celular en los microrganismos de los inóculos IG, IV e IGV.

Cabe mencionar que los pretratamientos Vin D FF [1 mol L⁻¹] (15) y Vin D FF [1 mol L⁻¹] (20) fueron los que mejor eficiencia de remoción de DQO presentaron cuando se realizó el pretratamiento, 84% y 58% respectivamente (Tabla 13). Esto puede ser explicado como un exceso de reactivos (H₂O₂ y Fe⁺³) que redujeron bastante la materia orgánica en los pretratamientos, pero desencadenaron la inhibición o muerte celular en las pruebas de producción de metano, ya sea por compuestos tóxicos intermediarios o por daños celulares causados por los reactivos. Estas inhibiciones que pueden presentarse en un acople POA + Digestión Anaerobia deben estudiarse con detenimiento en la conceptualización de la propuesta tecnológica del grupo de investigación. Lo descrito arriba, podría inhibir por completo el inóculo de un sistema a escala real, conllevando grandes pérdidas y la inviabilidad de la tecnología. Si bien se puede concluir de este estudio que las altas concentraciones de peróxido y de hierro afectan significativamente el inóculo y no deberían considerarse para una tecnología de acople, también puede ser válido en la conceptualización tecnológica, proponer sistemas anaerobios de dos fases para un mejor control perturbaciones (Acharya et al., 2011).
6.4 Seguimiento de archaeas metanogénicas por técnicas de biología molecular

Extracción de DNA y amplificación por PCR

En la Tabla 19 se observan las concentraciones del DNA extraído de los tratamientos de producción de metano (muestras tomadas al final del experimento) y la amplificación del producto PCR obtenido con los primeros 1106F y 1378R.

Tabla 19. Concentración de DNA y amplificación por PCR

<table>
<thead>
<tr>
<th>Prueba de Producción de Metano</th>
<th>concentración de DNA (ng/μL)</th>
<th>Amplificación por PCR (1106F y 1378R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin D FF [0,5 mol L-1] (15) + IG</td>
<td>14.000</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [0,5 mol L-1] (20) + IG</td>
<td>13.350</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin FF [0,5 mol L-1] (15) + IG</td>
<td>33.360</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Oz 30’ + IG</td>
<td>50.866</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin FF [1 mol L-1] (15) + IG</td>
<td>18.830</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [1 mol L-1] (20) + IG</td>
<td>13.300</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [1 mol L-1] (15) + IG</td>
<td>no se obtuvo DNA</td>
<td>No amplificó</td>
</tr>
<tr>
<td>Vin D FF [0,5 mol L-1] (15) + IV</td>
<td>14.250</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [0,5 mol L-1] (20) + IV</td>
<td>13.800</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin FF [0,5 mol L-1] (15) + IV</td>
<td>16.000</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Oz 30’ + IV</td>
<td>17.017</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin FF [1 mol L-1] (15) + IV</td>
<td>18.150</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [1 mol L-1] (20) + IV</td>
<td>16.020</td>
<td>No amplificó</td>
</tr>
<tr>
<td>Vin D FF [1 mol L-1] (15) + IV</td>
<td>no se obtuvo DNA</td>
<td>No amplificó</td>
</tr>
<tr>
<td>Vin D FF [0,5 mol L-1] (15) + IGV</td>
<td>15.867</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [0,5 mol L-1] (20) + IGV</td>
<td>50.800</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin FF [0,5 mol L-1] (15) + IGV</td>
<td>15.800</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Oz 30’ + IGV</td>
<td>50.650</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin FF [1 mol L-1] (15) + IGV</td>
<td>17.800</td>
<td>Amplificó</td>
</tr>
<tr>
<td>Vin D FF [1 mol L-1] (20) + IGV</td>
<td>15.300</td>
<td>No amplificó</td>
</tr>
<tr>
<td>Vin D FF [1 mol L-1] (15) + IGV</td>
<td>no se obtuvo DNA</td>
<td>No amplificó</td>
</tr>
<tr>
<td>IG</td>
<td>17.250</td>
<td>Amplificó</td>
</tr>
<tr>
<td>IV</td>
<td>15.300</td>
<td>Amplificó</td>
</tr>
<tr>
<td>IGV</td>
<td>15.700</td>
<td>Amplificó</td>
</tr>
</tbody>
</table>

Como se observa en la Tabla 19 y en la Figura 19, no se obtuvo DNA de los tratamientos de producción de metano con el sustrato Vin D FF [1 mol L^{-1}] (15) para ninguno de los tres inóculos. Esto está de acuerdo con la inhibición de la producción de metano, observada
en la Tabla 15 por parte del mismo sustrato y permite concluir que no se presentó inhibición, sino muerte de toda la comunidad microbiológica. Esto soporta lo argumentado en el capítulo 6.3.3 relacionado con el aumento de la toxicidad bajo ciertas condiciones de oxidación con fotofenton, responsable de la inhibición. Cabe mencionar que la extracción de DNA no discrimina entre grupos de microrganismos.

Figura 19. DNA en gel de agarosa 2.4%
1) Vin D FF [0.5 mol L$^{-1}$](20)+IV; 2) Vin D FF [1 mol L$^{-1}$](20)+IGV; 3) y 4) Vin D FF [1 mol L$^{-1}$](20)+IG; 5) Vin D FF [1 mol L$^{-1}$](15)+IG; 6) y 7) Vin D FF [1 mol L$^{-1}$](15)+IGV; 8) Vin D FF [1 mol L$^{-1}$](15)+IV.
Figura 20. Producto PCR (1106F y 1378R) en gel de agarosa 2.4%
1) Marcador de Peso (500 - 50 pb); 2) Control (-); 3) Control (+); 4) Vin D FF [1 mol L⁻¹](20)+IGV; 5) Vin FF [0.5 mol L⁻¹](15)+IG; 6) Vin D FF [1 mol L⁻¹](20)+IV; 7) Vin D FF [1 mol L⁻¹](20)+IG; 8) Vin D FF [1 mol L⁻¹](20)+IG; 9) y 10) Vin D FF [0.5 mol L⁻¹](20)+IG.

Como se observa en la Tabla 19, Figura 19 y Figura 20, se obtuvo DNA de todos los tratamientos de producción de metano con el sustrato Vin D FF [1 mol L⁻¹](20). No obstante, este DNA solo amplificó por PCR (1106F y 1378R) en el tratamiento que incluyó el IG. Con este resultado se concluye, que este sustrato no inhibe los microorganismos del IV e IGV. Cabe mencionar que el DNA extraído proviene de todos los microorganismos presentes en el inóculo, mientras que la amplificación por PCR se da exclusivamente sobre el DNA de archaeas metanogénicas.
Separación de bandas por DGGE

Figura 21. Separación de bandas obtenidas en la amplificación por PCR, mediante DGGE

1) IG; 2) IV; 3) IGV; 4) Vin D FF [0,5 mol L\(^{-1}\)](15)+IG; 5) Vin D FF [0,5 mol L\(^{-1}\)](15)+IV; 6) Vin D FF [0,5 mol L\(^{-1}\)](15)+IGV; 7) Vin D FF [1 mol L\(^{-1}\)](20)+IG; 8) Vacío.

La imagen de la Figura 21 corresponde al único gel de DGGE que se pudo obtener con el DNA amplificado de las muestras de esta investigación, previo al daño del equipo. Aunque no se tiene una buena visualización, la imagen fue analizada en un software de contrastes (UVIgelstartMw versión 11.01) para una mejor observación de las bandas. Las barras adicionadas a la imagen, corresponden a bandas no visibles pero que fueron detectadas con el software. Cabe mencionar que cada banda representa un grupo de archaeas metanogénicas que comparte una secuencia (pares de base) casi idéntica en el fragmento del gen 16S rRNA amplificado mediante PCR con los primers 1106F y 1378R. El número de bandas denota riqueza biológica, debido al número de variaciones posibles en la secuencia del mismo fragmento de gen.

En la Figura 21 se observa que todas las amplificaciones por PCR presentaron el mismo patrón de bandas (número y posición). No obstante el producto PCR del tratamiento Vin D
FF [1 mol L\(^{-1}\)](20)+IG (carril 7) no presentó el mismo patrón, por el contrario tiene una menor cantidad de bandas (enmarcadas en óvalos) con respecto a los productos de PCR en los demás carriles. Lo anterior refuerza el argumento del incremento de la toxicidad en la vinaza diluida por parte del pretratamiento FF [1 mol L\(^{-1}\)](20), disminuyendo el número de bandas en dicho tratamiento (muerte de algunos grupos de archaeas).

Esta etapa fue estandarizada exitosamente, no obstante solo se pudo obtener un gel con PCR amplificado de las muestras del experimento, ya que el equipo requerido para esta etapa se dañó y aun se encuentra en trámite para reparación por parte de la empresa importadora.

Técnicas de biología molecular para el estudio del comportamiento de archaeas metanogénicas en muestras ambientales

Uno de los objetivos iniciales de esta investigación, fue estudiar el efecto de los pretratamientos con POA’s sobre las comunidades metanogénicas. Este objetivo no se pudo cumplir a cabalidad por el daño del equipo de DGGE. Sin embargo, la experiencia del laboratorio en esta investigación, permite concluir algunos aspectos importantes sobre la aplicación de técnicas moleculares para el estudio biológico en muestras ambientales.

La extracción de DNA de muestras de suelo o lodo, es una práctica sencilla cuando se cuenta con un kit de extracción. Diferentes laboratorios producen estos kits, tales como Intron Biotechnology, Favorgen, Norgen, MPbio, MoBIO, entre otros.

En la estandarización de esta técnica se emplearon kits de MPbio y de MoBIO. Ambos tienen metodologías sencillas y en la estandarización funcionaron adecuadamente. No se recomienda mezclar los reactivos de ambos kits; ya que esto genera errores, aumento o repetición de pasos e incluso un proceso de extracción de DNA fallida. La metodología estandarizada puede tardar alrededor de 3 horas. Dependiendo del tipo de muestra (porcentaje de humedad) puede requerirse alguna variación en el protocolo del kit, principalmente en el tiempo y en la intensidad de la primera etapa de vórtex. Por otra parte, las muestras de agua deben emplear un tipo de kit diferente y éste requiere un mayor tiempo para el procesamiento.

La amplificación por PCR de DNA extraído de muestras ambientales, puede ser inhibida por las sustancias de la muestra. Para esto, es necesario obtener un DNA de alta calidad. En la estandarización de esta técnica, se emplearon tanto reactivos independientes, como kits MasterMix listos para usar. Ambas metodologías funcionan, no obstante el uso de kits MasterMix, reduce el error experimental, el gasto de reactivos y la repetición de las corridas. Cada set de primers usados en PCR deben ser estandarizados y el tiempo de estandarización dependerá de cada muestra. En ocasiones se requiere escoger o diseñar un nuevo par de primers que permitan la amplificación del fragmento. Cabe mencionar que los programas de PCR tomados de la literatura, con frecuencia requieren una adaptación previa al termociclador a emplear. Una corrida de PCR estandarizada, puede tardar entre 2 y 6 horas, incluyendo el tiempo de preparación de las reacciones.
La técnica de DGGE usada para separar el producto PCR, es una técnica costosa; requiere una estandarización de un nivel de complejidad intermedio y es de aplicación dispendiosa. Esta técnica debe ser estandarizada para cada set de primers usados en la amplificación por PCR. Las variaciones en los tiempos de corrida, según lo reportado en la literatura y respecto a lo estandarizado en el laboratorio, son muy altas. Para esta investigación se tuvo una variación de 10 horas con respecto a lo propuesto por Watanabe et al. (2006).

El estudio de archaeas metanogénicas puede llevarse a cabo, tanto con técnicas dependientes como independientes de cultivo. Las técnicas dependientes de cultivo siguen representando una alternativa de estudio; no obstante, éstas tienen la limitante de requerir mucho tiempo para su cultivo y de subestimar las poblaciones a causa de la presencia de organismos viables no cultivables. Por otro lado, las técnicas independientes de cultivo como las moleculares, requieren equipos costosos y la combinación de técnicas para la obtención de resultados. Las más usadas para archaeas metanogénicas son: qPCR, DGGE, FISH, TRLFP, LH-PCR (Cardenas y Tiedje, 2008; Talbot et al., 2008).

El uso de las técnicas moleculares para el estudio de archaeas metanogénicas, dependerá principalmente del objetivo del estudio. Es necesario conocer a fondo las técnicas, sus limitaciones y el alcance. Con las técnicas realizadas en esta investigación, se podría determinar una especie de riqueza biológica por número de bandas en la técnica de DGGE, sin llegar a determinar los organismos más influyentes en la metanogénesis, ya que esto requeriría una etapa posterior de secuenciación. Cabe mencionar que para llegar hasta este nivel de información, se podría evitar la técnica de DGGE, mediante la secuenciación directa del producto PCR. Esta metodología es cada vez más económica y accesible para los investigadores, por la tercerización del servicio. Otra técnica como qPCR, cuantifica directamente del número de copias, permitiendo la estimación de la abundancia de microorganismos y de la diversidad biológica. FISH representa otra alternativa de visualización y conteo de organismos, para la determinación de la diversidad microbiológica, no obstante esta técnica requiere de un microscopio y un filtro especial para su visualización y es necesaria una limpieza adecuada de la muestra para lograr una buena cuantificación.

Las técnicas realizadas en esta investigación no permitirían la determinación de la diversidad de archaeas metanogénicas, pero el número de bandas (DGGE) permiten estimar la riqueza biológica (variabilidad genética). En el único gel realizado (Figura 21), se observó que el pretratamiento FF [1 mol L\(^{-1}\)](20) aplicado sobre la vinaza diluida, disminuyó el número de bandas (riqueza) del IG, determinando que el sustrato resultante después del pretratamiento tiene propiedades tóxicas, ya que además de reducir el número de bandas en IG, causó la muerte de archaeas metanogénicas en IV e IGV. Por otro lado, al no obtener DNA en los tratamientos con el sustrato FF [1 mol L\(^{-1}\)](15), se comprobó que el pretratamiento indujo toxicidad sobre la vinaza y causó la muerte de los microorganismos en los tres inóculos. Con lo anterior se concluye que a pesar de las limitaciones presentadas en esta investigación, fue posible identificar efectos determinantes como la muerte y reducción de riqueza biológica.
6.5 Análisis financiero

Como uno de los objetivos de esta investigación, de estimar el impacto económico del mejoramiento de la producción de vinazas con POA’s, se realizó la viabilidad técnico-económica en el nivel de perfil del aprovechamiento del biogás con dos alternativas de uso. Lo anterior con la finalidad de viabilizar tanto tecnológicamente como económicamente, la producción de biogás en el Valle del Cauca. El uso de pre-tratamientos para el mejoramiento de la producción de biogás en las destilerías de alcohol carburante de la región, representan una buena oportunidad para aumentar la sostenibilidad de este tipo de proyectos de sustitución de combustibles de origen fósil. No obstante, es necesario continuar con la investigación y el desarrollo de acoples de oxidación avanzada y digestión anaerobia a escalas mayores (piloto), ya que con la información disponible, no es posible realizar por completo la prefactibilidad de un proyecto energético de biogás a partir de vinazas pretratadas con un POA. Actualmente no existen experiencias a escala real o piloto a nivel mundial que puedan dar soporte al estudio, sin embargo los sultados obtenidos en esta investigación permiten realizar el análisis financiero al nivel de perfil, el cual es un paso importante dentro de la factibilidad, como factor decisorio para continuar o abandonar la viabilidad económica de un proyecto. En el subcapítulo siguiente se presentan las ventajas de los pretratamientos en términos de incremento de la producción global de biogás y su posible incremento en las ventas.

La Figura 22 muestra el esquema de Conil (2005) de metanización de vinazas para el Valle del Cauca, éste se tomó como soporte técnico para el análisis financiero. El modelo utilizado es para destilerías con una capacidad instalada de 150.000L d⁻¹, valor que corresponde a las destilerías de menor capacidad de las que se encuentran actualmente en funcionamiento en el Valle del Cauca. Así mismo, este modelo sirve para nuevos proyectos con la misma capacidad instalada (destilerías medianas y pequeñas). El esquema enfatiza en la metanización de vinazas con concentración de sólidos del 35% (tecnología Praj de la India), ya que actualmente no se cuenta con experiencias exitosas para la metanización de vinazas al 55% de sólidos (Tecnología de concentración de vinazas; Delta - Americana). Este planteamiento podría generar grandes ahorros en la compra de equipos concentradores (evaporadores) en los nuevos proyectos. Dentro de este esquema técnico también se plantea la venta de una parte de la vinaza para pienso animal (después de la metanización) y otra para la fertilización líquida de los cultivos de caña de azúcar después de un pulimento de los efluentes metanizados en lagunas aireadas. Las alternativas se encuentran seleccionadas con un puntero.
Figura 22. Esquema técnico de metanización de vinazas para una producción de 600 m3 d-1 de vinazas con concentración de sólidos del 35%

Fuente: Conil (2005)

A partir de la referencia tecnológica se realizó un estudio financiero del aprovechamiento del biogás, al interior de las fábricas de azúcar y destilerías en el Valle del Cauca. Se consideraron dos escenarios de aprovechamiento del biogás descritos en la Tabla 20

Tabla 20. Aprovechamientos de biogás planteados, para uso en las agroindustrias azucareras

<table>
<thead>
<tr>
<th>Tipo de Aprovechamiento del Biogás</th>
<th>Beneficio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción de energía eléctrica</td>
<td>Venta de kW-h a la red nacional</td>
</tr>
<tr>
<td>Quema de biogás en calderas pirotubulares y generación de energía eléctrica autoconsumo</td>
<td>Ahorro en GNC, ahorro de 10 MkW-h/año</td>
</tr>
</tbody>
</table>

La Figura 23 presenta los diferentes valores empleados para cuantificar losbeneficios de las alternativas presentadas, adicionalmente se utilizó una tasa de conversión de 1USD/2000COP para la conversión de volúmenes y de unidades energéticas en valores monetarios. Todos los valores monetarios están dados en COP, no obstante fue
necesario emplear la tasa de conversión de divisas para los costos de Ingeniería e Importaciones.

![Diagrama de Producción de Energía eléctrica y Quema de Biogás en calderas pirotubulares]

- Venta del Kw-h a la red: $108.98
- 59.36 m3 GN = 1 tonelada de vapor
 - Kw-h = 246.21

Figura 23. Valores de cálculo empleados en el análisis

La Tabla 21, muestra los beneficios contabilizados en pesos colombianos para las dos alternativas de uso del biogás.

Tabla 21. Beneficios del aprovechamiento del biogás

<table>
<thead>
<tr>
<th>Tipo de aprovechamiento</th>
<th>Unidades producidas</th>
<th>Valor unidad</th>
<th>Valor total COP/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación de energía eléctrica</td>
<td>22 MKw-h/año</td>
<td>$108,98/Kw-h (contrato)</td>
<td>$2.397.560.000</td>
</tr>
<tr>
<td>Reemplazo de GNC por biogás en calderas pirotubulares y generación de 8,8 MKw-h/año</td>
<td>87600 Ton Vapor/año</td>
<td>$660,85/m3 (precio de GNC industrial)</td>
<td>$3.442.235.148</td>
</tr>
</tbody>
</table>

En la Tabla 22 se muestra el análisis financiero realizado para ambos aprovechamientos del biogás producido en el sistema anaerobio; para este análisis se tuvo en cuenta un horizonte de 20 años, inversiones realizadas con capital propio durante el primer año y una tasa de descuento del 16% normalmente utilizados en proyectos de dicha categoría y envergadura. Dentro de las ventas de los proyectos también fueron incluidos los beneficios por venta de vinaza para pienso animal (4.234 Ton/año; 51,55USD/Ton) y los ahorros por reemplazo de fertilizantes (3.927 bultos de urea ahorrados/año; 243USD/50Kg Urea).
Tabla 22. Análisis financiero de las opciones de uso: Producción de energía eléctrica y quema de biogás en calderas pirotubulares y generación de 1 MW

<table>
<thead>
<tr>
<th></th>
<th>Producción de energía eléctrica</th>
<th>Quema de biogás en calderas pirotubulares y generación de 1 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones Fijas</td>
<td>$15.285.625.000</td>
<td>$11.685.625.000</td>
</tr>
<tr>
<td>Inversiones Diferidas</td>
<td>$155.500.000</td>
<td>$155.500.000</td>
</tr>
<tr>
<td>Flujo Ajustado de Inversión</td>
<td>$15.441.125.000</td>
<td>$11.841.125.000</td>
</tr>
<tr>
<td>Costo de Operación (anual)</td>
<td>$136.320.000</td>
<td>$136.320.000</td>
</tr>
<tr>
<td>Ventas (anuales)</td>
<td>$5.347.999.889</td>
<td>$8.141.947.481</td>
</tr>
<tr>
<td>Flujo ajustado de producción</td>
<td>$4.845.839.889</td>
<td>$7.679.627.481</td>
</tr>
<tr>
<td>VNA (tasa de descuento: 16%)</td>
<td>$12.410.327.304,21</td>
<td>$32.665.787.610,08</td>
</tr>
<tr>
<td>TIR</td>
<td>30%</td>
<td>62%</td>
</tr>
<tr>
<td>Tiempo de recuperación de la inversión</td>
<td>4,5</td>
<td>2,8</td>
</tr>
</tbody>
</table>

En la Tabla 22 se presenta el resumen del análisis financiero de las dos opciones de aprovechamiento del biogás, para mayor detalle ver los anexos. La mejor opción es la quema de biogás en calderas y la generación de energía eléctrica para autoconsumo; esta opción genera un adicional de $20.255.460.366 comparado con la venta de energía eléctrica a la red nacional y un tiempo de retorno de la inversión menor (1,7 años). Por otro lado, la opción de la quema de biogás en calderas también representa la mejor opción en términos de operación interna de la fábrica de azúcar y la destilería, ya que no es necesario vender un producto a un consumidor externo y acarrear con el proceso de facturación y cartera. Además, la generación de energía eléctrica para autoconsumo permite el funcionamiento en isla de algunos sectores del complejo industrial, sin conexión a la red eléctrica.

6.5.1 Pretratamiento de vinaza como una adicionalidad económica a su metanización

A partir del análisis financiero mostrado anteriormente y de los incrementos en la producción de metano presentados por los pretratamientos, se decidió incluir las mejoras propiciadas por los pretratamientos como un plus a la inversión en la generación y aprovechamiento de biogás a partir de vinazas. Los rendimientos de generación incrementados por parte de los pretratamientos, se tendrán en cuenta solo en el incremento tentativo de las ventas, ya que no se cuenta con una sistema piloto en continuo que pueda revelar información sobre los costos de operación y mantenimiento del sistema de pretratamiento. Dentro de este enfoque se comparó el mejor pretratamiento para vinazas diluidas (Vin D FF [0,5 mol L⁻¹] (20)), y el pretratamiento de Vin Oz 30’ (tecnología más económica que el fotofenton) para vinazas no diluidas. El incremento de la generación de metano por parte de los pretratamientos con fotofenton y ozono fue de 65,5% y 45,4% respectivamente.
Tabla 23. Análisis financiero - incluyendo el pretratamiento con Fotofenton

<table>
<thead>
<tr>
<th></th>
<th>Producción de energía eléctrica</th>
<th>Quema de biogás en calderas pirotubulares y generación de 1 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones Fijas</td>
<td>$15.285.625.000</td>
<td>$11.685.625.000</td>
</tr>
<tr>
<td>Inversiones Diferidas</td>
<td>$155.500.000</td>
<td>$155.500.000</td>
</tr>
<tr>
<td>Flujo Ajustado de Inversión</td>
<td>$15.441.125.000</td>
<td>$11.841.125.000</td>
</tr>
<tr>
<td>Costo de Operación (anual)</td>
<td>$136.320.000</td>
<td>$136.320.000</td>
</tr>
<tr>
<td>Ventas (anuales)</td>
<td>$5.347.999.889</td>
<td>$8.141.947.481</td>
</tr>
<tr>
<td>Flujo ajustado de producción</td>
<td>$4.845.839.889</td>
<td>$7.679.627.481</td>
</tr>
<tr>
<td>VNA (tasa de descuento: 16%)</td>
<td>$32.995.557.385,47</td>
<td>$64.005.328.686</td>
</tr>
<tr>
<td>TIR</td>
<td>52%</td>
<td>107%</td>
</tr>
<tr>
<td>Tiempo de recuperación de la inversión.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 24. Análisis financiero – incluyendo el pretratamiento con Ozono

<table>
<thead>
<tr>
<th></th>
<th>Producción de energía eléctrica</th>
<th>Quema de biogás en calderas pirotubulares y generación de 1 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones Fijas</td>
<td>$15.285.625.000</td>
<td>$11.685.625.000</td>
</tr>
<tr>
<td>Inversiones Diferidas</td>
<td>$155.500.000</td>
<td>$155.500.000</td>
</tr>
<tr>
<td>Flujo Ajustado de Inversión</td>
<td>$15.441.125.000</td>
<td>$11.841.125.000</td>
</tr>
<tr>
<td>Costo de Operación (anual)</td>
<td>$136.320.000</td>
<td>$136.320.000</td>
</tr>
<tr>
<td>Ventas (anuales)</td>
<td>$5.347.999.889</td>
<td>$8.141.947.481</td>
</tr>
<tr>
<td>Flujo ajustado de producción</td>
<td>$4.845.839.889</td>
<td>$7.679.627.481</td>
</tr>
<tr>
<td>VNA (tasa de descuento: 16%)</td>
<td>$26.677.598.542,39</td>
<td>$54.386.688.044,39</td>
</tr>
<tr>
<td>TIR</td>
<td>46%</td>
<td>93%</td>
</tr>
<tr>
<td>Tiempo de recuperación de la inversión.</td>
<td>3,3</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Los pretratamientos influenciaron la tasa de producción de metano, lo cual es un aspecto importante desde el punto de vista financiero (Siles et al., 2011), ya que una mayor generación de metano por unidad de masa de DQO adiciónada puede mejorar el análisis económico (Tabla 23 y Tabla 24), mejorando la rentabilidad de estos proyectos y volviendo más atractiva la inversión.

7 CONCLUSIONES

El mejor pretratamiento de fotofenton aplicado en vinaza diluida, tuvo una concentración de H₂O₂ de 0,5 mol L⁻¹ y una relación H₂O₂/Fe⁺³ de 20. La producción máxima de metano obtenida fue de 19,5 mL (CNTP). Este pretratamiento y el pretratamiento de ozono por 30 minutos, incrementaron la producción de metano en 66% y 45% respectivamente.
Una concentración de H_2O_2 de 1 mol L$^{-1}$ para el pretratamiento de vinazas diluidas, inhibe la producción de metano y causa muerte a los microrganismos presentes. Una relación de H_2O_2/Fe$^{3+}$ de 15 empeora la situación. Inóculos de alta organización microbiológica (IG - granular) tienen una mayor resistencia a esta inhibición. La mezcla de inóculos (IGV) presentó buena estabilidad y resistencia, estas características deben ser tenidas en cuenta en sistemas de metanización de vinazas.

Mayores dosis de ozono (600 mg O$_3$) reducen tanto la degradación de la materia orgánica, como la biodegradabilidad de las vinazas respecto a dosis menores (300 mg O$_3$). Un menor tiempo de contacto con ozono, representa la mejor opción para la metanización de vinazas previamente ozonizadas.

Técnicas de biología molecular como la extracción de DNA y amplificación por PCR, permiten determinar efectos como la muerte de microorganismos. Técnicas más complejas como DGGE, permiten conocer el efecto de la toxicidad de un sustrato sobre un inóculo, mediante la estimación de la riqueza biológica.

En el nivel de perfil, la valorización más rentable para el biogás producido a partir de vinazas, es la sustitución de Gas Natural Comprimido (GNC) en calderas y la generación de energía eléctrica para autoconsumo. Los pretratamientos con FotoFenton y Ozono incrementaron en un 40% la TIR del proyecto y redujeron el tiempo de recuperación de la inversión hasta en 1.5 años.

8 RECOMENDACIONES

Esta investigación se debe continuar para abarcar toda la información posible de las muestras que fueron colectadas para la medición de AGV, al igual que la extracción de DNA y su posterior análisis. Con las mediciones de AGV por cromatografía líquida, se podrá determinar las vías o rutas metabólicas más empleadas para la producción de metano de vinazas pretratadas. Además se podrá determinar en las pruebas de producción de metano con el sustrato Vin FF [1 mol L$^{-1}$] (20) si hubo generación de propionato y acetato y si éstos fueron consumido por bacterias sulfato-reductoras (SRB) que hayan resistido el estrés del pretratamiento. También se requiere continuar con el análisis biológico de los experimentos (DNA y análisis downstream DGGE), diferenciando entre la riqueza biológica de los inóculos y el efecto de los pretratamientos sobre esta riqueza. Por otro lado, 40 días es tiempo suficiente para obtener la producción máxima de metano para vinazas pretratadas con POA’s. La carga volumétrica empleada (2mg DQQ mL$^{-1}$) podría ser incrementada en la medida que se realizará un arranque adecuado en un reactor controlado y en continuo o semi-continuo.

Se debe continuar estudiando sobre el uso de vinazas no concentradas, directamente obtenidas en la destilería y ver sus ventajas en términos de mayor producción de metano respecto a las vinazas obtenidas posterior a la etapa de recirculación de las mismas (previa concentración o evaporación). El eliminar las fases de recirculación y concentración de los esquemas actuales de producción de las destilerías del Valle del
Cauca, traería consigo muchos ahorros en la inversión inicial y en energía eléctrica en su proceso de operación.

Este tipo de acoples para la producción de metano representan una gran alternativa para la producción de biocombustibles de segunda generación. Se recomienda seguir investigando en éstos, pensando en nuevas modificaciones de ingeniería conceptual como de fases, de temperaturas, etc.
9 BIBLIOGRAFÍA

CENICAÑA. (2006). Informe Anual, CENICAÑA.

CENICAÑA. (2009). El Estado del Etanol de Caña de Azucar en Colombia, CENICAÑA.

Alternativa 1: Sustitución de GNC, quema de biogás en calderas y la generación de 10 MW-h/año.

Tabla 25. Presupuesto de Inversiones

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ITEM 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inversiones fijas ($11.685.625.000)</td>
<td>$0</td>
<td>$11.040.000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>1.1</td>
<td>No depreciables</td>
<td>($65.625.000)</td>
<td>$0</td>
</tr>
<tr>
<td>1.2</td>
<td>Depreciables</td>
<td>($11.620.000.000)</td>
<td>$11.040.000</td>
<td>$0</td>
</tr>
<tr>
<td>1.3</td>
<td>Terrenos</td>
<td>($65.625.000)</td>
<td>$0</td>
</tr>
<tr>
<td>1.4</td>
<td>Construcciones civiles</td>
<td>($1.066.785.000)</td>
<td>$0</td>
</tr>
<tr>
<td>1.5</td>
<td>Otros</td>
<td>($1.838.215.000)</td>
<td>$0</td>
</tr>
<tr>
<td>1.6</td>
<td>Maquinaria y equipos</td>
<td>($8.715.000.000)</td>
<td>$0</td>
</tr>
<tr>
<td>2</td>
<td>Inversiones diferidas ($155.500.000)</td>
<td>$0</td>
</tr>
<tr>
<td>2.1</td>
<td>Estudios</td>
<td>($155.500.000)</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Flujo ajustado de Inversión ($11.841.125.000)</td>
<td>$0</td>
</tr>
</tbody>
</table>

Tabla 26. Costos de Operación

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ITEM 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COSTO DIRECTO</td>
<td>$0</td>
<td>$867.600.000</td>
<td>$136.320.000</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Mano de obra</td>
<td>$0</td>
<td>$542.250.000</td>
<td>$85.200.000</td>
</tr>
<tr>
<td>1.2</td>
<td>Prestaciones</td>
<td>$0</td>
<td>$325.350.000</td>
<td>$51.120.000</td>
</tr>
<tr>
<td></td>
<td>TOTAL COSTO OPERACIÓN</td>
<td>$0</td>
<td>$867.600.000</td>
<td>$136.320.000</td>
</tr>
</tbody>
</table>
Tabla 27. Producción de la Alternativa 1

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ITEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingresos por venta</td>
<td>$0</td>
<td>$8,141,947,481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Costo total</td>
<td>$0</td>
<td>$1,212,042,850</td>
<td>$480,762,850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilidad neta ajustada</td>
<td>$0</td>
<td>$6,929,904,631</td>
<td>$7,661,184,631</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+) Amortización de los diferidos</td>
<td>$0</td>
<td>$7,775,000</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 28. Flujo Neto de Caja

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ITEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flujo ajustado de inversión (con financiam)</td>
<td>($11,841,947,481)</td>
<td>$0</td>
<td>$11,841,947,481</td>
</tr>
</tbody>
</table>
10.2 Alternativa 2: Venta de Energía Eléctrica a la Red Nacional

Tabla 29. Presupuesto de Inversiones

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1. Inversiones fijas</td>
<td>($15.285.625.000)</td>
<td>$0</td>
</tr>
<tr>
<td>1.1 No depreciables</td>
<td>($15.625.000)</td>
<td></td>
</tr>
<tr>
<td>Terrenos</td>
<td>($5.625.000)</td>
<td></td>
</tr>
<tr>
<td>1.2 Depreciables</td>
<td>($15.220.000.000)</td>
<td>$11.040.000</td>
<td></td>
</tr>
<tr>
<td>Construcciones Civiles</td>
<td>($1.066.785.000)</td>
<td></td>
</tr>
<tr>
<td>Maquinaria y equipos</td>
<td>($11.415.000.000)</td>
<td>$11.040.000</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>($2.738.215.000)</td>
<td></td>
</tr>
<tr>
<td>2. Inversiones diferidas</td>
<td>($155.500.000)</td>
<td>$0</td>
</tr>
<tr>
<td>Estudios</td>
<td>($155.500.000)</td>
<td></td>
</tr>
<tr>
<td>Flujo ajustado de inversión</td>
<td>($15.441.125.000)</td>
<td>$0</td>
</tr>
</tbody>
</table>

Tabla 30. Costos de Operación

<table>
<thead>
<tr>
<th>ITEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1. COSTO DIRECTO</td>
<td>$0</td>
<td>$867.600.000</td>
<td>$136.320.000</td>
</tr>
<tr>
<td>Mano de obra</td>
<td>$0</td>
<td>$867.600.000</td>
<td>$136.320.000</td>
</tr>
<tr>
<td>Prestaciones</td>
<td>$0</td>
<td>$867.600.000</td>
<td>$136.320.000</td>
</tr>
<tr>
<td>TOTAL COSTO OPERACIÓN</td>
<td>$0</td>
<td>$867.600.000</td>
<td>$136.320.000</td>
</tr>
</tbody>
</table>
Tabla 31. Producción de la Alternativa 2

<table>
<thead>
<tr>
<th>Año</th>
<th>ITEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Costo total</td>
<td>$0</td>
<td>$1,393,415,000</td>
<td>$662,135,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+) Amortización de los diferidos</td>
<td>$0</td>
<td>$7,775,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+) Depreciaciones</td>
<td>$0</td>
<td>$152,200,000</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 32. Flujo Neto de Caja

<table>
<thead>
<tr>
<th>Año</th>
<th>ITEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flujo ajustado de inversión (con financiam)</td>
<td>($15,441,125,000)</td>
<td>$0</td>
<td>$12,510,000</td>
</tr>
</tbody>
</table>