NARCOTRÁFICO Y REDES: UNA APROXIMACIÓN AL PROBLEMA DE BALANCE EN EL CARTEL DEL NORTE DEL VALLE.

OSCAR DAVID CARDONA GALLEGRO

TRABAJO DE GRADO

TUTOR
BORIS SALAZAR TRUJILLO

UNIVERSIDAD DEL VALLE
FACULTAD DE CIENCIAS SOCIALES Y ECONÓMICAS
DEPARTAMENTO DE ECONOMÍA
SANTIAGO DE CALI
2019
Tabla de Contenido

1. **Resumen**: ... 1
2. **Introducción**: .. 2
3. **Problema**: .. 4
4. **Revisión de literatura** ... 7
 4.1 Teoría de redes y el problema de los mundos pequeños 11
 4.2 Redes de signo ... 14
 4.3 Balance estructural ... 18
 4.4 BlockModeling .. 21
5. **Datos y Metodología** ... 24
 5.1 Datos ... 25
 5.2 Procedimiento .. 29
6. **Resultados** .. 34
 6.1 La red .. 34
 6.2 Medición del Balance .. 40
7. **Conclusiones** .. 43
8. **Bibliografía** ... 47
9. **Anexos** ... 50
 Anexo 1. Tabla de nodos ... 50
 Anexo 2. Resultado medición balance evento 1 56
 Anexo 3. Resultado medición balance evento 2 56
 Anexo 4. Resultado medición balance evento 3 56
 Anexo 5. Resultado medición balance evento 4 56
 Anexo 6. Resultado medición balance evento 5 56
 Anexo 7. Resultado medición balance evento 6 56
 Anexo 8. Resultado medición balance evento 7 57
 Anexo 9. Grafo de la red en el evento 2 58
 Anexo 9. Grafo de la red en el evento 3 59
 Anexo 10. Grafo de la red en el evento 4 60
 Anexo 11. Grafo de la red en el evento 5 61
 Anexo 12. Grafo de la red en el evento 6 62
 Anexo 13. Grafo de la red en el evento 7 63
 Anexo 14. Grafo de la red en el evento 7 63
 Anexo 15. Vista previa de la matriz de signos evento 1 64
 Anexo 16. Vista previa de la matriz de signos evento 3 64
 Anexo 17. Vista previa de la matriz de signos evento 7 65
Tabla de Ilustraciones

Ilustración 1. Grafo de signos Persona-Otro-Objeto (POX) ... 15
Ilustración 2. Casos de equilibrio de una tríada ... 16
Ilustración 3. Semicamino en un grafo (POX) ... 19
Ilustración 4. Red de signos partitionada de las naciones del mundo entre 1946-1949 23
Ilustración 5. Grafo de la red en el evento 1 ... 37
Ilustración 6. Grafo por Hubs evento 1 ... 40
Ilustración 7. Comportamiento de las medidas de balance a través de los eventos 41
1. Resumen:

El presente documento realiza una medición del balance de la red de narcotraficantes del Cartel del Norte del Valle, en donde se encuentra para el periodo comprendido entre finales de 1993 y el 2004, que esta estructura tiene una medida promedio de 0,72 unidades, para siete hitos definidos en este rango de tiempo. La medida arroja la presencia de altas tensiones en la red, producto de las interacciones estratégicas entre los nodos, sugiriendo un alto nivel de desbalance en la red. Esto se debe a que las interacciones estratégicas de los nodos, conllevaron a la remoción de nodos y a la modificación de los signos que corresponden a los tipos de enlaces dentro de la red, dando como resultado el aumento de las tensiones y por ende el aumento en el nivel de desbalance, los cuales se encuentran están relacionados con el aumento en los niveles de violencia.
2. Introducción:

El narcotráfico como fenómeno social y económico se ha estudiado desde diferentes áreas del conocimiento. El más frecuente en la literatura económica se refiere al enfoque de la *teoría de los bienes ilegales* (Becker, Murphy, & Grossman, 2004) y la *economía del crimen* (Becker, 1968), la cual adopta una visión microeconómica para analizar las acciones, preferencias y beneficios de los individuos que realizan este tipo de actividades de carácter ilícito. Por otro lado, también existen autores que desde una línea macroeconómica, como por ejemplo (Ortiz, 2003), utilizan modelos de crecimiento y regresiones con variables proxy para ver el efecto de este fenómeno sobre la tasa de crecimiento del país para algunos periodos.

Un enfoque alternativo ha centrado sus esfuerzos en usar la *teoría de redes sociales* para abarcar el fenómeno del narcotráfico, como es el caso de (Raffo, 2010), (Raffo, 2009) y (Segura, 2011) en los cuales, sobre todo para este último autor, se demuestra que el Cartel\(^1\) del Norte del Valle (CNV) opera como una red con la propiedad de *mundos pequeños*. El uso de este enfoque radica en que para realizar el análisis de la red de traficantes de este sector, es necesario conocer la forma en la que los individuos, que hacen parte de una organización, ya sea de producción, tráfico o corrupción, interactúan no solo entre sí, sino también, con las demás organizaciones; dándole forma y estructura de tipo jerárquico a su propia red.

Este trabajo pretende avanzar en el estudio de las estructuras de narcotráfico realizando una medición estructural del balance del Cartel del Norte del Valle. Para ello se debe entender por balance como un estado en donde las tensiones o enemistades entre actores, no conlleva a la disolución de la red estudiada; es decir, el término balance se debe entender como el estado revelado a través de las mediciones realizadas en los diferentes puntos o hitos.

\(^1\) Si bien, en microeconomía un cartel se define como un acuerdo o colusión entre productores de un mismo bien, para establecer los niveles de producción de cada uno y con ello, lograr eliminar la competencia, adquiriendo un poder de mercado que les permita comportarse como un monopolio, en el presente documento se le llamará cartel a la asociación entre narcotraficantes para producir y comercializar estupefacientes. Esto debido principalmente a que es con este término que se encuentran registradas las actividades de estos actores en organismos institucionales como la Administración para el Control de Drogas DEA, por sus siglas en inglés y la Vicepresidencia de la República de Colombia, además, así es como se les conoce a estas asociaciones entre narcotraficantes en el argot latinoamericano.
del tiempo, que dan cuenta de si la forma y cantidad de tensiones que se generan dentro de la red, producto de la interacción humana, dan como resultado que la red con sus enlaces y nodos sigan interactuando o por el contrario, se fragmente de tal manera que de origen a nuevas redes más pequeñas o la misma se elimine. Es aquí donde la teoría de redes, obtiene una ganancia puesto que permite, a partir de asociaciones entre nodos y vértices, medir el nivel de balance o desbalance de una red como la del CNV; cosa que con otras metodologías no se puede lograr hasta el momento.

Para lograr este objetivo, se hizo necesario reconstruir la red del CNV en siete hitos o eventos que posteriormente se detallan en la sección 4.1. Esto se realiza con el objetivo de tener varias mediciones entre los años 1993 y 2004, debido a que el concepto de balance está intrínsecamente asociado al concepto de equilibrio y, por tanto, se espera que una medida de balance sea aplicada en diferentes momentos del tiempo. Para ello se utilizan las metodologías de las redes de signo y del modelamiento por bloques, las cuales permitieron establecer los tipos de relaciones (amistad-hostilidad), encontrar la medida de balance, y analizar la evolución del balance de la red, ya que por sí sola, una sola medición de este tipo, es poco intuitiva si no se analiza en otros momentos o eventos del tiempo. Los resultados obtenidos son coherentes con los sucesos ocurridos para el CNV, puesto que las medidas de balance encontradas, alcanzaron un valor promedio de 0,72 unidades para los siete eventos definidos, en donde se interpreta que entre más cercano a 1 sea dicha medida, mayor serán las tensiones dentro de la red y mayor el nivel de desbalance.

Este documento se compone de siete secciones, en el cual en la siguiente sección se realiza el planteamiento del problema a tratar en este estudio, y el principal objetivo del mismo, el cual es realizar una medición para la red del CNV, en la cuarta sección se realiza la revisión de literatura en donde se exponen los desarrollos en la teoría de redes, las redes de signos, la teoría del balance estructural y el modelamiento por bloques. En la quinta sección se explica la metodología, las fuentes de información, el procedimiento para obtener los datos y el procedimiento para encontrar la medida de balance a través del modelamiento por bloques. La sexta sección muestra los resultados
encontrados bajo la metodología propuesta en la sección anterior y en la séptima sección, las conclusiones. Posteriormente se encuentran las referencias bibliográficas y, por último, los anexos.

3. Problema:

Existen varias formas de abordar el fenómeno del narcotráfico, que van desde una línea microeconómica, pasando por una línea macro como la tratada en (Ortiz, 2003) o la relación del narcotráfico y el lavado de activos (Mejía & Gaviria, 2011), incluso este fenómeno se ha tratado desde enfoques alternativos como la teoría de redes sociales (Segura, 2011). Ahora bien, en varios de los enfoques mencionados, se argumenta la necesidad de estudiar el narcotráfico dado que los efectos que esta actividad genera, tienen un impacto negativo a nivel económico y social, a causa de la violencia que se genera en torno a la represión en la fase productiva. En lo que parecen estar de acuerdo los diferentes autores es en crear políticas que disminuyan estos impactos generados por la narcoactividad.

Partiendo del hecho que si bien algunas políticas de interdicción han sido relevantes en el desenvolvimiento y mutación que ha sufrido el narcotráfico en los últimos años, al día de hoy estas políticas han sido ineficaces, debido a la gran cantidad de recursos utilizados en las políticas comúnmente conocidas como antinarcóticos, que no han logrado desaparecer la producción de estupefacientes y por el contrario, han incrementado los índices de violencia en el territorio colombiano (Mejía, 2016). Se estima la inversión de 1,2 billones de dólares cofinanciado con el gobierno de Estados Unidos, en fortalecimiento militar para combatir el narcotráfico desde el lado de la producción y la muerte de 57,000 personas entre el periodo de 1994 a 2008 a causa de la violencia generada tanto por las actividades propias del negocio, como por la violencia generada por el enfrentamiento contra el Estado. El resumen después de 17 años de implementación del Plan Colombia, no es el esperado en su intento de combatir el narcotráfico desde el lado de la oferta, según cifras de la Oficina de las Naciones Unidad contra la Droga y el Crimen UNODC, la tendencia decreciente del número de hectáreas cultivadas entre los años 2000 al 2013 se
ha revertido y para el periodo 2013-2015 este número se elevó cerca de un 30%.

Fernando Estrada (2007), sugirió que la captura de grandes cabezas del narcotráfico, como lo fueron alias “Chupeta” o alias “Rasguño”, poco aportan al desmantelamiento de la red de traficantes, debido a que existe un aprendizaje de los subalternos sobre el negocio (estructuras menores); los cuales en busca de ascender verticalmente en el escalafón de mando rompen los vínculos adquiridos años atrás. Esta dinámica genera nuevas estructuras con un rápido crecimiento tanto en tamaño como en poder adquisitivo, pudiendo reemplazar los nodos que una vez ejercían dicho poder.

El razonamiento presentado por Estrada, muestra de manera intuitiva una de las propiedades de las redes sociales, ya que este aprendizaje en la práctica, como en los modelos de crecimiento, juega un papel importante en el resultado en el desarrollo del CNV, puesto que esta organización emerge como una de esas estructuras con rápido crecimiento del poder adquisitivo, el cual le permitió tener un elevado poder militar y de corrupción. La dinámica propia de estas estructuras, hace que los nodos que ejercen ese poder militar y económico, pierdan cohesión con el paso del tiempo, a través de la lucha por terrenos, rutas, venganzas, entre otras interacciones, generando tensiones y situaciones que incentivan la emergencia de otras nuevas estructuras (Estrada, 2007).

La elección del CNV en este estudio se debe a diferentes razones; en primera instancia, se necesita un caso de estudio que contraste la teoría tanto de las redes sociales, como de la teoría del balance estructural y las redes de signos, y que aquellas teorías concuerden con el desenvolvimiento histórico de las redes de tráfico. Por otro lado, cómo el carácter del narcotráfico es una actividad lucrativa pero ilícita, las fuentes de información para cuantificar los costos de producción, cantidades producidas, tamaño de la demanda, entre otros factores son pocas. Sin embargo, para el caso del CNV, aunque se pueda dudar en ciertos detalles del desenvolvimiento del cartel, se puede decir que está documentado tanto en estructura como en historia, lo que facilita la
caracterización de los vínculos que se dieron en la fase de operaciones del cartel.

Una razón más para escoger este cartel, es que su historia está marcada por una fase de enfrentamientos con otros carteles, como lo es el cartel de Cali, que generó una serie de interacciones y actos violentos, los cuales son la materia prima de este trabajo. Es decir, estos actos violentos entre carteles que pertenecen a una misma red, se pueden interpretar como las tensiones que surgen en una red cuando esta se encuentra desbalanceada, lo que genera el enfrentamiento entre dos o más bandos, y este tipo de actos violentos a su vez permite la creación de redes de corrupción y seguridad para sus dueños y/o participantes en toda la cadena productiva, configurando nuevas actividades económicas como el sicariato y propagando una cultura de violencia no solo dentro la red de carteles, sino mucho más allá de estas, puesto que una persona puede pertenecer a varias redes o grupos sociales a la vez.

Este estudio pretende avanzar en la descripción y análisis de la estructura de las redes de narcotráfico. El objetivo principal es obtener una medida de balance que permita aportar a la caracterización de este tipo de redes. Este hecho se sustenta en la idea de que a pesar de que las políticas de represión lograron desarticular los grandes carteles de las drogas como el CNV e incluso reducir la cantidad de cocaína exportada hacia otros países, el narcotráfico como negocio no ha desaparecido, por lo tanto, los esfuerzos se deben centrar en seguir entendiendo cómo se originó y cómo ha evolucionado a través del tiempo este fenómeno económico y social.

Para poder ver la evolución de la red del CNV, se hace necesaria la construcción de la red a través de la metodología de redes, es decir, representar a los miembros de estas organizaciones como un nodo y a las relaciones entre los mismos, como enlaces. Es decir, que como objetivo secundario se tiene la construcción de la red en los siete eventos que se definen en la sección 4.2 y transformar esta red, en una red de signos para poder realizar las mediciones de balance como objetivo principal.
4. Revisión de literatura

En general, la literatura económica sobre el narcotráfico se encuentra agrupada alrededor de tres grandes tópicos: el enfoque macro estudia el efecto del narcotráfico sobre actividades que generalmente tienen repercusiones sobre el crecimiento. El enfoque micro, se interesa en encontrar si los beneficios devengados por la actividad ilícita, son mayores o menores que los costos incurridos, teniendo valoraciones sobre el riesgo de muerte y la aversión al riesgo, esto entre otras variables sobre el individuo y sus preferencias. Por último, la parte alternativa o heterodoxa se concentra en estudiar las estructuras y comportamientos de los participantes en la actividad económica, analizando su distribución, posición, comportamiento y posterior evolución, dado el conjunto y la secuencia de datos obtenibles, dentro de aquella estructura llamada red.

Por otro lado, también existen trabajos como el de Lozano (2008) que sugieren utilizar la teoría de juegos para definir un esquema de pagos y estrategias para los individuos dentro de la red, y de acuerdo a sus pagos y estrategias, analizar en una serie de repeticiones del juego cuál es la estrategia que más se repite. De aquí que el concepto implícito de balance se refiere a la repetición de prácticas por parte de los individuos de la sociedad; esto tiene mucho sentido, debido a que la sostenibilidad de una sociedad se basa en las buenas o malas prácticas de los individuos en relación con la naturaleza. Sin embargo, esta estrategia para abordar el problema de estabilidad o balance posee una gran desventaja, definir el pago concerniente a una actividad de carácter ilícito implica estimar el valor en términos monetarios de dicha actividad, y dado su carácter ilícito, este valor no será revelado fácilmente por los agentes que pertenezcan o estén relacionados indirectamente con la actividad narcotraficante.

Autores como Rand, Nowak, Fowler y Christakis (2014) estudian la cooperación humana dentro de redes simuladas, basándose en el dilema del prisionero y los atributos de las redes, para establecer dos tipos de estrategias, una cooperar, y la otra, depredar. En este sentido, las estrategias que tiene cada jugador se asemejan a los lazos o relaciones duales existentes dentro de
la red, es decir, un pago es asignado como positivo si la estrategia le conviene al jugador, esto trasladado a las relaciones dicotómicas sería igual a tener un signo positivo si el lazo es de amistad. El principal aporte de los autores es mostrar la importancia de las redes en la cooperación humana, y que aquellas redes pueden influir sobre la estrategia elegida por el individuo conllevando a que la cooperación sea estable o no. Sin embargo, para el caso del CNV las simulaciones de los pagos que reciben sus miembros por las alianzas establecidas, son subjetivos debido a que como ocurrieron los hechos, estas alianzas dependían de factores como la pertenencia o cercanía a alguno de los grandes carteles, el costo económico de emprender una guerra contra otro miembro e incluso el costo social en caso de las delaciones por parte de sus miembros (Lopéz, 2008).

La idea anterior la retoman Facchetti, Iacono y Altafini (2011) que parten de este tipo de relaciones duales, para estudiar tres tipos de redes sociales, a las cuales a cada lazo o arista que conecte a un par de nodos se le asigna un signo (+) o un signo menos (-), dependiendo si el tipo de lazo es de amistad u hostilidad. A partir de estas relaciones, los autores estudian las características de dichas redes para determinar si estas se encuentran en un estado de desbalance.

Dado lo anterior, se plantea entonces como alternativa para abordar este problema de balance en la red del CNV trabajar con la redes de signo definidas por Heider (1946), en donde el autor trata de explorar la naturaleza de las relaciones interpersonales y acude a la lógica formal, demostrando que para que una triada\(^2\) se encuentre en un equilibrio estructural, todos los tipos de relaciones deben ser positivos o debe presentarse la condición de que dos relaciones sean negativas y una positiva, en este caso también se presenta un equilibrio.

Para entender mejor la idea anterior, se parte del hecho que las relaciones interpersonales pueden ser duales, es decir, en una red pueden existir lazos de amistad o rivalidad-hostilidad, por lo que para que exista un balance estructural

\(^2\) El término triada en redes, hace referencia a una estructura compuesta por tres nodos unidos mediante tres enlaces, la cual es usualmente representada mediante un grafo, que sirve como ejemplo para explicar eventos que suceden en redes de mayor tamaño y complejidad.
en este tipo de esquemas, se debe presentar la condición para el ejemplo de una red compuesta por tres personas, de que o todos los lazos son de amistad, o dos de estos lazos son hostilidad y uno amistad, de lo contrario, la red tenderá a crear tensiones desestabilizándola. Para el desarrollo de este documento, el punto anterior es fundamental, ya que para cualquier par de nodos, lo enlaces existentes se clasifican de acuerdo dicha lógica, siempre teniendo en cuenta que los enlaces en una red pueden cambiar de signo a través del tiempo, incluso se pueden crear nuevos enlaces y clasificarse o removerse alguno que se hayan creado con anterioridad, y es este factor dinámico decisivo para establecer el nivel de balance dentro de una red.

El mecanismo entonces para trabajar con la red del CNV con respecto a los otros carteles, es pues, convertir las matrices de adyacencia, que son las matrices en donde se condensa la información tanto de los nodos, como de los enlaces presentes dentro de la red, y convertirla en una matriz de signos, para calcular bajo la teoría del balance estructural y las redes de signo el balance inter-red del CNV, esto es, el balance entre las tensiones generadas tanto al interior del CNV como las tensiones generadas por los otros grupos o actores ilegales presentes en la red.

El enfoque usado en este estudio es una combinación de teoría económica y de la teoría de las redes sociales, por lo que se tratarán los principales desarrollos en esta rama o disciplina usada en la economía, para estudiar la interacción entre individuos. Los desarrollos explicados en este acápite, muestran la relación entre las diferentes medidas estructurales y los sistemas complejos, esto servirá como punto de partida para entender un método de medición un poco más complejo que será aplicado al objeto de estudio y para entender también las herramientas ya aplicadas en trabajos anteriores sobre el CNV.

Ahora bien, según lo planteado en Aldana (2011), uno de los puntos más relevantes para entender como está conformada una red, consiste en definir estas características estructurales y cómo estas se relacionan con los sistemas complejos. El autor presenta cuatro características esenciales para definir estos sistemas: La primera es la presencia de muchas partes, indicando que el
número de componentes tiende a crecer y a complejizar los análisis; la segunda es la conformación de subestructuras a partir de las componentes más pequeñas, las cuales a su vez, tienen una estructura propia; la tercera característica es la presencia de relaciones no lineales entre las partes, indicando que lo que le ocurre a una parte o componente de la red, afecta en un sentido que puede ser no lineal al resto de componentes y la red en general; por último; la cuarta característica es la presencia de comportamientos o fenómenos emergentes, es decir, que la totalidad de la red o sus efectos en ella, no son sólo la suma de sus partes individuales.

Desde un punto de vista metodológico, el tratamiento de las redes como sistemas complejos, permite entender las redes como estructuras que se pueden categorizar bajo parámetros establecidos por el investigador. Para Aldana (2011), una forma de categorizar las redes es bajo la distribución de grado que estas presentan. Al igual que en (Onnela et al., 2007) encontrar la forma en cómo se distribuye el grado de conectividad de los nodos es importante para este análisis debido a que estas tipologías pueden ayudar a caracterizar la red del CNV dado el conjunto de nodos y enlaces propuestos. Estos estudios son relevantes en la medida en que avanzan en la caracterización de redes a través de un conjunto de propiedades intrínsecas que pueden ser halladas a través de las diferentes medidas que actualmente existen, como por ejemplo, el coeficiente de agrupamiento para toda la red, la clasificación de los nodos de acuerdo a su conectividad, la clasificación de los enlaces, entre otras mediciones.

Para el caso de estudio sobre el CNV, la distribución de grado de los nodos para los siete eventos definidos en la metodología, decae muy rápido a medida que aumenta la cantidad de los mismos, esto en términos prácticos se traduce en que existen pocas personas que poseen una alta conectividad y muchas que tienen una baja conectividad, por lo que se puede considerar la estructura del CNV como una red libre de escala, la cual se caracteriza por ser la más frecuente en redes sociales y que sigue una función de distribución de la forma:

Ecuación 1. Función de Distribución de Grado

\[P(k) = Ck^{-\gamma} \]
Donde k representa el número de conexiones que posee un nodo, C es una constante cualquiera, $P(k)$ es la probabilidad de que un nodo escogido al azar, tenga el número k de conexiones y γ es el parámetro que varía de acuerdo al tipo de red. En el Anexo 1 se encuentra la tabla de nodos para el evento 1 y en su última columna se puede observar el grado de conectividad de cada nodo. Cabe resaltar que como la red trabajada es una red no dirigida, en donde se establece que, si existe un vínculo entre un par de nodos cualesquiera, la relación será bilateral, esto da como resultado que el grado en entrada y salida de cada nodo sea el mismo.

Partiendo de un punto de vista estructural, las redes se han convertido en un paradigma alternativo que usa las características de los sistemas complejos y las propiedades de los comportamientos emergentes para dar explicaciones más robustas a fenómenos que ocurren en distintas sociedades. Por lo tanto, el análisis de redes sociales se ha convertido, como lo explica Wellman (1997), en un referente que pasa de una visión minimalista en la cual se usan mediciones y herramientas matemáticas y estadísticas, a un enfoque mucho más amplio, el cual ha desarrollado un conjunto de principios y características coherentes, respaldados por una cantidad de trabajos empíricos de un tamaño considerable, revistas de investigación especializadas y conferencias llevadas alrededor del mundo.

4.1 Teoría de redes y el problema de los mundos pequeños

Los mundos pequeños, o redes de mundos pequeños son una teorización que realizan (Travers & Milgram, 1969) a través de un experimento que realizó Stanley Milgram en Estados Unidos. Este experimento se interesó en saber cuánta es la distancia geodésica promedio para que dos personas elegidas al azar en dicho país, se conozcan. El resultado del experimento fue que se necesitan en promedio de 5 a 7 intermediarios para que se dé el enlace esperado. Por otra parte, autores como Watts y Strogatz (1998) realizaron un estudio con grafos aleatorios, basándose en una modificación del modelo Erdös–Rényi, para generar las redes aleatorias, en el cual, este modelo le asigna una probabilidad casi nula de que ocurran los cierres tríadicos para cada par de nodos generados, y la distancia geodésica aumente a medida que
aumenta el número de nodos presente en la red. Las conclusiones de aquel estudio, según los autores, fueron que las redes poseían ciertas propiedades y que algunas de estas, se podían clasificar de acuerdo al agrupamiento o coeficiente de Clustering y a la distancia promedio entre el conjunto total de pares de nodos.

Por otra parte, un aporte al análisis de redes sociales es el que hacen autores como Segura (2011), en el que el autor comprueba, que para el caso del CNV, que se cumple el teorema de los mundos pequeños, en donde el camino más corto (distancia geodésica) que une un par de nodos cualquiera dentro de la red, se encuentra en promedio entre 5 y 7 vínculos. Teóricamente, el coeficiente de agrupamiento se encuentra en el rango 0-1, en donde entre más cercano a la unidad sea este valor, mayor será el nivel de agrupamiento en la red. El aporte de Segura es que el coeficiente de Clustering para el CNV toma un valor de 0.68, lo cual conjunto a una distancia geodésica promedio de 2,5 entre cualquier par de nodos de su red y la presencia de nodos con un alto nivel de intermediación, indican que para el CNV se cumple la propiedad de mundos pequeños.

De hecho, las redes que presentan esta propiedad de mundos pequeños, al tener un alto coeficiente de agrupamiento y distancias geodésicas cortas, representan un atractivo para el estudio de las redes de narcotráfico debido a que estas últimas se caracterizan por presentar una alta agrupación en bandos organizados para delinquir y en donde el camino promedio entre cualquier par de nodos es pequeño debido a que estas redes se conforman a través del amigo del amigo del amigo, es decir, a través de la confianza. Esto conlleva a que cualquier nodo dentro de la red sea fácilmente encontrado en tan solo pocos pasos, y lo que en términos de la historia del CNV, generaba vulnerabilidad en los esquemas de seguridad de los grandes narcotraficantes, ya que los ataques contra alguno de sus miembros generalmente se realizaban a través de personas de confianza de la víctima.

Lo que no es claro en el documento de Segura (2011), es la relación que poseen las redes de mundos pequeños y los tipos de redes, como lo son, por ejemplo, las de tipo libre de escala. Para ello, es necesario entender que una
red con la propiedad de *mundos pequeños*, no implica una red pequeña o con pocos nodos y vínculos, sino una red con altos niveles de conectividad y altamente agrupada. Sin embargo, Watts (2006) esclarece esta relación afirmando que en una red, reglas muy sencillas a la escala de las acciones individuales, pueden generar una complejidad enorme cuando todos los individuos interactúan al tiempo, de acuerdo a cambios en la estructura de la red, por lo que seguir el efecto de dicha regla o decisión, puede resultar muy complicado y no hallarse una respuesta analítica.

La relación entre los *mundos pequeños* y los *sistemas complejos* se halla en el conjunto de medidas estructurales usadas para definir el conjunto de la red. En el caso de Segura (2011), esta relación se encuentra en la presencia de un alto coeficiente de agrupamiento, el cual indica que al estar altamente conectada la red, una decisión o una regla definida afecta (en un sentido altamente no lineal) los vínculos y nodos presentes y el desenvolvimiento que estos puedan tener.

Una agrupación con la propiedad de *mundos pequeños* como el CNV, en donde sus nodos operan bajo el razonamiento que presentan Levitt y Venkatesh (1998), los cuales pretenden maximizar los beneficios derivados de su actividad económica y la vez ascender verticalmente en el escalafón de mando para obtener cada vez mayores beneficios que superen los costos afrontados de la actividad ilícita, permite que se generen tensiones en la red. La presencia de tensiones derivadas de si las relaciones resultantes son de amistad u hostilidad entre los nodos, es lo que genera que la red evolucione o se vaya transformando.

Las interacciones estratégicas entre los miembros del CNV son la materia prima de este trabajo, los cuales permiten ver el desenvolvimiento de la red y cómo estas interacciones entre nodos, como los de los grandes narcotraficantes, afectan a los demás nodos. Un claro ejemplo de lo anterior, se puede ver por ejemplo en la guerra que sostuvo Wilber Varela contra Hélmer Pacho Herrera, que hizo que varios de los miembros del CNV tomaran posiciones a favor o en contra de uno de los bandos, desencadenando una escalada de la violencia en el departamento del Valle entre los años 1996 y 1998. En este sentido la violencia observada entre los años 1994 y 2008,
emerge como el resultado de las tensiones derivadas de las numerosas interacciones estratégicas entre los nodos y que afectan no solo a su círculo personal de amigos y trabajadores, sino también a cientos o miles de personas que no están directamente involucrados en el negocio. Se estima que 57,000 colombianos murieron como consecuencia de los enfrentamientos entre carteles y de la lucha del Estado contra los mismos en el periodo de 1994 a 2008 (Mejía, 2016).

El aprendizaje en la práctica de las actividades ilícitas que logran algunos nodos dentro de la red y la esperanza de ascender verticalmente en el escalafón de mando, también son algunos de los generadores de tensiones en la red. Sin embargo, aún con la presencia de estas tensiones en la red, el negocio del narcotráfico no ha desaparecido, por el contrario, lo que se observa es que las redes de narcotráfico mutan hacia otros tipos de redes, tal y como lo plantean Salazar y Frasser (2013).

4.2 Redes de signo

Las redes de signo o signed networks tienen su origen en los planteamientos de Heider (1946), quien sentó las bases para el estudio de relaciones dicotómicas y la presencia de un posible equilibrio de acuerdo a lo establecido en dichas relaciones. El planteamiento del autor, es que existen relaciones en las cuales las personas se pueden sentir incómodas cuando no están de acuerdo con una decisión o posición de un amigo, por lo que esto crearía tensiones en los lazos de amistad, pudiendo romper con el vínculo formado previamente. Además, el autor predice que en uno de los dos personajes tendrá el impulso de cambiar esa situación de estrés, ya sea modificando su opinión sobre el tema o la decisión, cambiando el afecto por su amigo o en última instancia, convenciéndose a sí mismo, de que su amistad con la otra persona no es opuesta a su opinión sobre el tema o la decisión.

Más adelante, Cartwright y Harary (1956) trasladan esta idea de tipos de relaciones dicotómicas dentro del análisis de redes sociales. Ellos definieron un tipo de red, formada por enlaces o vínculos que representa los lazos afectivos entre los miembros de la estructura, llamándolos signed graph o grafos de signos. Estos grafos de signos son grafos normales de los que se usan para
representar una red de cualquier tipo con nodos y enlaces, con la diferencia de que a cada vínculo se le asigna un signo positivo (+) o uno negativo (-) dependiendo si el tipo de vínculo que poseen los nodos es de amistad o rivalidad, respectivamente.

La ilustración 1 muestra un grafo compuesto por tres nodos P, O y X, y por tres enlaces que siguen la definición anteriormente descrita, es decir, si la relación es de amistad, se representará con una línea continua, mientras que si la relación entre los nodos es de enemistad u hostilidad, se representará con una línea punteada. Esta representación es la comúnmente usada en los signed graph y para este caso, hace referencia al planteamiento original propuesto en (Cartwright & Harary, 1956).

Ilustración 1. Grafo de signos Persona-Otro-Objeto (POX)

Estudiando los cierres tríadicos, los autores definieron un ciclo como el camino necesario para partir de un nodo y volver a este mismo. En el caso de las tríadas, el ejercicio es sencillo y les permitió a los autores establecer las combinaciones y signos posibles dentro de este escenario, por lo que plantearon la posibilidad de la existencia de un equilibrio en el cual las tensiones no llevaran a la disolución del grafo. La conclusión para que se diera dicho equilibrio, era que el número de enlaces negativos fuese par o que por el contrario, no existiesen signos negativos y todos fuesen positivos, es decir, en donde las multiplicaciones de todos los signos diesen como resultado un signo positivo. Con este criterio, según los autores, lograban garantizar un equilibrio en donde las tensiones generadas por las decisiones o acciones de algunos miembros de la red, no la llevaran a fragmentarse hasta el punto en el que se pueda considerar una disolución de la estructura mayor.
Se debe aclarar que los cierres tríadicos son una propiedad de las redes sociales, por ejemplo, en el caso en que dos personas comparten un mismo amigo, la probabilidad de que estas dos personas sean amigas es mayor que la probabilidad de que sean amigas sin tener este amigo en común. Sin embargo para el caso de las redes de signo, este cierre tríadico se da por sentado y lo que se estudia no es la probabilidad de que estos cierres se den, sino los tipos de relaciones existentes y la “calidad” de las mismas, para establecer un estado de balance, puesto que según planteado en Heider (1946), las personas poseen una predilección inherente por los estados de simetría estructural y estratificación racional. Esto en la teoría de grafos, esto se conoce como equilibrio estructural.

Ilustración 2. Casos de equilibrio de una tríada

Como se puede observar en el anterior gráfico, se muestran ocho posibles casos de equilibrio o desequilibrio, de acuerdo a las posibles combinaciones entre signos, nodos y enlaces (que en ese caso representan un cierre tríadico). Las relaciones se establecen de acuerdo a los signos mencionados anteriormente (+ o -). Para el caso en que la relación es de amistad, se le asigna un (+1) y se representa mediante una la línea continua, mientras que cuando se quiere mostrar la situación contraria, es decir, una situación de hostilidad, se asigna un (-1) y se representa mediante la línea punteada. La
parte superior de la gráfica muestra los casos en que la red se encuentra equilibrada, dado que se cumple el teorema propuesto en Cartwright y Harary (1956), que establece un número de enlaces negativos par. En la parte inferior, se muestran los casos de desequilibrio o desbalance, que corresponden a la presencia de un número impar de enlaces negativos en la red.

A partir de las condiciones para las tríadas Cartwright y Harary (1956) logran generalizar las condiciones para redes dirigidas, puesto que como lo mencionan en el texto, las relaciones afectivas no tienen por qué ser simétricas o recíprocas, basándose en el hallazgo de Heider (1946) según el cual los sentimientos de una persona hacia otra, no tienen por qué ser los mismos que de esa última persona hacia la inicial. La solución planteada por los autores, consiste en ignorar la dirección o sentido del vínculo y simplemente dedicarse a contar el número de enlaces positivos y negativos presentes en la red. El sustento para dicho planteamiento, viene desde la psicología ampliamente analizada y descrita en Heider (1946), en el que los sentimientos de un individuo se toman como la proyección de una persona (P) hacia otra persona (O) o algo (X).

Para Heider (1946), los sentimientos y la percepción de los individuos es una cuestión clave que se debe estudiar con detenimiento, debido a que como lo explica el autor, la relación entre O y X en la ilustración 2, es medida desde la percepción de P, lo que no representa necesariamente la opinión o percepción real de O sobre X. En psicología social a este fenómeno se le llama atribución.

En el análisis de redes, lo que importa son las expectativas, los sentimientos, las opiniones y en general el tipo de relaciones que tiene un miembro del grupo hacia los demás miembros que conforman la red. Esto conduce a la noción de *equilibrio estructural* planteada en Cartwright y Harary (1956) según la cual se espera encontrar para una red de signos, un equilibrio basado en los patrones existentes dentro de la red y los tipos de enlaces en la estructura, y no en los sentimientos, opiniones y en general atribuciones de un miembro del grupo por separado. Es decir, para el caso del CNV los enlaces se categorizan de acuerdo a si un nodo tiene la percepción de que otro nodo es su amigo o enemigo, con esto se le asigna el valor correspondiente (+1 o -1) solo a dicho
enlace y no importa si los demás nodos tienen otra percepción diferente sobre dicha relación.

4.3 Balance estructural

Como se ha mencionado, las bases para el desarrollo de la teoría del balance estructural se conciben en el trabajo de Heider (1946), el cual desarrolla un marco lógico que posteriormente le permitió a Cartwright y Harary (1956) formalizar las condiciones necesarias para el estudio fructífero de las redes de signo. A partir de este punto, empiezan a aparecer en la literatura especializada, desarrollos en cuanto a formas de medir balances, algoritmos eficientes y análisis empíricos con datos de redes reales.

El concepto de balance estructural supone que las redes, en especial las sociales, tienden a un estado de equilibrio o balance en donde las personas pertenecientes a este conjunto de estudio, modifican sus percepciones, opiniones y relaciones, impulsados por las situaciones de estrés que se pueden presentar (signos negativos). Así pues, la red tiende a remover vínculos o nodos que causan dicho estrés, llevando la estructura a una nueva fase de equilibrio. Trabajos como el de De Nooy et al. (2005) aseguran que este planteamiento, a pesar de ser fuerte, se cumple en la mayoría de los casos estudiados a través de diferentes trabajos empíricos.

Las condiciones para lograr un equilibrio estructural planteadas en Cartwright y Harary (1956), implican que la red estudiada debe encontrarse altamente polarizada a nivel de grupos. Es decir, la red se debe poder particionar en dos clústeres, en los cuales todos los enlaces positivos o relaciones de amistad, se encuentren en un grupo y los enlaces negativos o relaciones de enemistad, se encuentren entre los clústeres restantes. Por lo tanto, es lógico pensar que la red debe ser altamente polarizada, en donde en un escenario de dos grupos, los miembros de un grupo interactúan intensamente con los miembros del mismo grupo, pero muy poco con los miembros del otro grupo. En este sentido es posible encontrar que la mayoría de lazos negativos se den entre grupos y los vínculos positivos, dentro de los grupos.
Autores como Facchetti et al. (2011) afirman que siguiendo la lógica de las redes de signo y el balance estructural, el nivel de balance dependerá entonces de la conectividad de la red, el porcentaje de enlaces negativos sobre el total de enlaces y del tipo de distribución que sigan estos enlaces negativos. En particular los autores realizan un análisis para tres redes de gran tamaño, encontrando que las mismas se encuentran altamente balanceadas, debido al alto grado de asimetría en la distribución de los signos que unen los nodos de la red.

Sin embargo, el mundo real es más complejo y las redes poseen más de dos clústeres con relaciones mucho más complejas, por lo que, siguiendo la lógica central de las redes de signo y la teoría del equilibrio estructural, Davis (1967) generalizó las condiciones para encontrar una red balanceada con k-clústeres. Según el autor, un grafo de signos es k-balanceado si este puede ser partitionado en k subconjuntos, tales que, los enlaces positivos se encuentren dentro de los k subconjuntos y los enlaces negativos entre los k-1 subconjuntos. La condición necesaria para que se cumpla este escenario, es que los subconjuntos no contengan semiciclos con enlaces negativos. Definiendo los semiciclos como un semicamino cerrado.

Ilustración 3. Semicamino en un grafo (POX)

Como se puede observar en la ilustración 3, el conjunto de enlaces que va de P a X o de P a O, y que regresa de nuevo a P, representa un semicamino y un semiciclo, debido a que no todos los enlaces que comienzan en P completan la secuencia para regresar al nodo inicial (P). Al igual que en la primera gráfica, la forma más sencilla de representar un grafo de signos, es a través de los vínculos. Es decir, las líneas continuas representan enlaces positivos (amistad).
y las líneas punteadas, representan enlaces negativos (rivalidad). En este caso, la figura representa un grafo desbalanceado, debido a que presenta un número de enlaces negativos impar, lo que hace que el semiciclo esté desbalanceado y por tanto el grafo.

Posteriormente, Doreian y Mrvar (1996) se trazaron como objetivo crear una medida de desbalance para las redes de signo, que permitiese estudiar diferentes tipos de redes y mirar su evolución. Para lograr este objetivo, los autores definieron una función de criterio que, en su versión sencilla, tuviese en cuenta que el problema se aplica a redes de signos, con dos posibles estados en sus enlaces. Por tanto, el número de enlaces de cada tipo se vuelve relevante, aunque la novedad en esta medida, es tener en cuenta si un enlace cambia de signo o se remueve, genera una red balanceada o desbalanceada y estudiar que tan buena es la partición, teniendo en cuenta el número de enlaces de cada tipo. La función de criterio propuesta por los autores toma la siguiente forma:

Ecuación 2. Función de Criterio

\[P(C) = \alpha \times \sum N + (1 - \alpha) \times \sum P \]

Donde \(0 \leq \alpha \leq 1\) el cual representa el peso o ponderación que se le da al tipo de error, ya sea de enlaces positivos o negativos. Si \(\alpha = 0.5\) la ponderación para ambos errores es la misma. \(N\) es el número de errores positivos, es decir, el número de enlaces positivos en un bloque negativo y \(P\) es el número de enlaces negativos en un bloque positivo.

Con el desarrollo de las tecnologías en información y comunicación, se ha reducido el problema para poder obtener los datos que permiten establecer las conexiones entre diferentes actores, lo cual se convierte en materia prima para la creación de diferentes tipos de redes, la principal implicación de este hecho, es que la construcción de redes sociales para su estudio hoy en día, es mucho más sencilla que hace un par de décadas. A medida que se tienen acceso a los datos en redes digitales tales como Facebook (Bhagat et al., 2016), Twitter, redes de sitios de comercio electrónico como Epinions (Facchetti et al., 2011) entre muchas otras, la cuestión ya no solo gira en torno a cómo hallar medidas
que den cuenta de sus estructuras, sino también a cómo presentar la información de forma que sea entendible, debido a la complejidad asociada a la cantidad de nodos y vínculos presentes. Es por esto que surgieron técnicas como el modelamiento por bloques, que posteriormente se aplicaron en el \textit{análisis de redes}, en donde se usa como herramienta para la detección de bloques o grupos que pueden estar relacionados, mediante características intrínsecas de la red. En el caso de las \textit{redes de signos} el modelamiento por bloques sirve para caracterizar los bloques como positivos o negativos tal y como se caracterizan las relaciones en la sección 4.1 y 4.2.

4.4 BlockModeling

El modelamiento por bloques o \textit{blockmodeling} tiene sus inicios en el trabajo de equivalencia estructural de Lorrain y White (1971), los cuales a través del método llamado mapeo funcional, intentan capturar los patrones intrínsecos de la estructura de la red y no solo los roles de los nodos, que aunque importantes para definir las relaciones de los grupos sociales, no necesariamente dan cuenta de la relación entre los grupos, por lo que a través de isomorfismos generalizados3, intentan capturar el comportamiento de aquellos grupos; es decir, sus patrones globales que permiten dar cuenta de los efectos de los comportamientos de los individuos sobre la red, más allá de la suma lineal de sus propias componentes.

El objetivo principal del \textit{blockmodeling} es representar grandes redes que poseen una vasta cantidad de información en cuanto a nodos y vínculos, en una representación mucho más pequeña y fácil de entender. Para ello se recurre a la partición de los vértices y los enlaces para crear una imagen más pequeña y maleable dependiendo de los objetivos de la investigación. Este fue el punto de partida para implementar los desarrollos en la teoría del balance estructural y aplicarla a las redes de signos.

Doreian y Mrvar (1996) establecieron de manera clara la conexión entre el modelamiento por bloques y la teoría del balance estructural mediante la

3 El problema de isomorfismos es determinar si un grafo es igual a otro, dado un conjunto de elementos o características. En computación, esto se convierte en un problema de decisión con dos posibles respuestas (si o no) y se resuelve a través del método de cliques.
definición de tipos de bloques, que obedecen a los tipos de relaciones presentes en la estructura, en este caso, los bloques corresponden a los signos que existen de acuerdo a los vínculos. Es decir, los autores definieron los bloques positivos y negativos de acuerdo a la distribución de los tipos de vínculos, para cuantificar las desviaciones de un vínculo respecto a su tipo de bloque, esto con el objetivo de medir las posibles tensiones que se pueden crear en el bloque, conllevando a un posible caso de desbalance (ver ecuación 2).

El modelamiento por bloques se define entonces como una herramienta desarrollada en el análisis de redes, la cual es flexible y tiene como objetivo encontrar bloques o conjuntos de nodos con características intrínsecas de la red que puedan explicar el comportamiento global de la misma. Por tanto, es un método capaz de detectar estructuras centro periferia y cohesión, aunque como se advierte en De Nooy et al. (2005) esta técnica no reemplaza las técnicas individuales de análisis de redes tales como: agrupamientos jerárquicos, medidas de centralidad, ranking o escalonamiento, entre otras, que son medidas estructurales.

La técnica consiste en organizar la información en matrices, que posteriormente serán usadas como materia prima para la creación de los bloques. De manera intuitiva, lo que se trata de lograr con el método es reorganizar la información de una matriz, de tal manera, que al mostrar la información se puedan observar conjuntos de nodos unidos por alguna característica, lo que se podrá notar visualmente al inspeccionar la matriz resultado. Mediante el uso de las permutaciones⁴, se logra ordenar la información que generará un tipo de estructura, por lo que no necesariamente se tiene que tener identificada una estructura a priori.

⁴ Una permutación es asignar un nuevo número o etiqueta a los vínculos presentes en la red, con el objetivo de que no siempre queden en la misma posición, por lo que permite inspeccionar visualmente la red, con diferentes organizaciones y encontrar agrupaciones o bloques, sin alterar los nodos o vínculos, por lo que generará visualizaciones isomorfas de la red.
Ilustración 4. Red de signos particionada de las naciones del mundo entre 1946-1949

La ilustración 4 muestra el resultado de aplicar las permutaciones a una red, que corresponde a las relaciones políticas que sostuvieron las diferentes naciones entre los años especificados. El estudio corresponde al análisis de las dinámicas del sistema internacional de naciones, en una red de signos, en el periodo de 1946 a 1999. En la investigación realizada por Doreian y Mrvar (2015), en donde se puede observar que los enlaces positivos están representados por el color negro, los enlaces negativos por el color rojo y los enlaces sin signo o nulos, representados por el color blanco.

Al igual que en las ilustraciones 1 y 2 se representan las redes mediante la figura de ciclos, las matrices también son un método habitual de representar estas redes. La matriz resultante es cuadrada debido a que las filas y las columnas son del mismo tamaño y representan el número de nodos (naciones).
Los componentes de la matriz representan los vínculos y la diagonal se encuentra vacía debido a que no se tienen en cuenta, en este caso, las relaciones de una nación con ella misma. Así mismo, una vez se tiene la matriz permutada, se puede observar gráficamente la estructura, la cantidad y el tipo de bloques presentes. En el caso de la ilustración 4, los bloques positivos obedecen a los grupos formados alrededor de la diagonal principal, con componentes negras y la presencia de algunas componentes rojas (enlaces negativos) que indican la presencia de tensiones y, por tanto, alguna medida de desbalance.

5. Datos y Metodología

Uno de los principales problemas en el análisis de redes es obtener la información necesaria para poder establecer los vínculos entre las componentes, por lo que esta labor se torna complicada en muchos casos, en especial cuando los registros no arrojan información detallada ni un periodo temporal definido. En el caso de actividades ilícitas, este tema se agudiza un poco más debido a la poca información existente sobre la misma. Esto se debe a que los agentes que practican actividades con dicha naturaleza, no tienen incentivos para reportar información sobre su estructura, ni sobre la operatividad de sus organizaciones.

La metodología propuesta en Segura (2011) para rastrear las relaciones entre los actores del Cartel del Norte del Valle, es clave para el desarrollo de este estudio, puesto que en esta metodología se encuentran las bases para la conformación de los tipos de enlaces o vínculos, dado el conjunto de nodos (información) disponible. La técnica consiste en centrarse en el libro *El cartel de los sapos* (Lopéz, 2008) y contrastar los personajes y vínculos esbozados por el autor, con fuentes oficiales (Observatorio del Programa Presidencial de Derechos Humanos y DIH, 2006). Con esta información se construye la red y se pueden encontrar diferentes medidas estructurales, tal y como lo realiza el autor.

Ahora bien, teniendo como base los anteriores trabajos y la metodología de Segura (2011), el siguiente paso para la obtención de una medida de balance,
es asignar los correspondientes signos a las relaciones establecidas previamente. Lo anterior se puede lograr, gracias a la información provista en (Observatorio del Programa Presidencial de Derechos Humanos y DIH, 2006) y (Lopéz, 2008) en donde se detallan las conexiones entre los jefes de los carteles, sus subalternos y con otras organizaciones, entre otros actores. El trabajo de López se desarrolla a manera de narrativa, permitiendo seguir la cronología de los hechos más relevantes en la fase de operaciones y ubicar los actores, sus lazos y sus signos, en puntos específicos del tiempo. De manera muy resumida, de lo que se trata es de asignar los valores de +1 o -1 a los enlaces de la red del Cartel del Norte del Valle tal y como se trabaja en las redes de signo y registrar sus cambios, con lo cual se puede encontrar una medida de balance, mostrando además los efectos de esos cambios de signos en la red.

5.1 Datos

Como se ha mencionado, existen tres diferentes fuentes de información en las cuales se pueden establecer vínculos entre actores y contrastar la información declarada en una de estas fuentes, con las demás. A continuación, se detalla brevemente el tipo de documento y el desarrollo de sus ideas principales:

Informe del Observatorio del Programa Presidencial de Derechos Humanos y DIH:

Este documento es una publicación realizada por el Observatorio del Programa Presidencial de Derechos Humanos y DIH para la Vicepresidencia de la República, el cual tiene como objetivo principal realizar un monitoreo, seguimiento, evaluación y publicación de la situación de los derechos humanos, la violencia y confrontación armada en el país. Este documento de carácter oficial, realiza una descripción de la violencia en el departamento del Valle, adjudicada a la presencia de narcotraficantes que encontraron en la región, no solo condiciones geográficas favorables para el negocio, sino también un conjunto de factores que permitieron establecer una cultura “mafiosa”. La poca presencia del Estado, el uso de la violencia como instrumento para ejercer el control sobre los territorios, la poca reacción de la clase...
política y económica frente a esos escenarios de intimidación, entre otros factores, fueron los que permitieron que las actividades cocaleras en la región, se expandieran hasta el punto que, dichas actividades ilícitas permearon las principales actividades económicas y culturales del departamento.

Bajo las condiciones anteriormente expuestas, en el Valle del Cauca, en especial en la región norte de este departamento, la presencia de actores armados como los grupos al margen de la ley y los narcotraficantes, presentaron una serie de interacciones estratégicas en las que se presentaron disputas por los territorios, rutas y mercados, mediante el uso de métodos coercitivos a través de la violencia, originando un episodio de violencia sin precedente a finales del siglo XX. Estas interacciones estratégicas permitieron el establecimiento de alianzas, la creación de grupos narcotraficantes que disputaron guerras con otros carteles conocidos y entre ellos mismos, por lo que se convierten en materia prima para el estudio del narcotráfico en el territorio colombiano y dado que el documento se trata de una fuente oficial del gobierno, permite contrastar información de otras fuentes, permitiendo corregir problemas de sesgo en las posibles interacciones a estudiar.

El Cartel de los Sapos (Lopéz, 2008):

Es un relato escrito por Andrés López López en el cual el autor relata sus vivencias en el mundo del narcotráfico, dado que él mismo fue protagonista del llamado Cartel del Norte del Valle. En este libro el autor intenta establecer en un orden cronológico, los hechos y personajes más relevantes de dicha organización en el periodo comprendido a inicios de los años 90’s y el año 2004. El texto se convierte en un recurso importante para el establecimiento de actores, vínculos y alianzas establecidas por el CNV ya que se trata de una fuente primaria que, aunque ha recibido muchas críticas porque algunos de los hechos narrados en el documento no concuerdan con versiones de otros actores que también estuvieron involucrados, este documento es una narración
de un actor clave que hay que tener en cuenta, puesto que la mayoría de las alianzas establecidas sí son rastreables a través de los medios públicos como la prensa y porque existen algunas versiones de otros jefes que se entregaron a la justicia y rindieron declaratorias oficiales. El problema de subjetividad en el texto al tratarse de un solo punto de vista (el del autor), sin embargo, puede ser corregido (hasta el grado en el que la información disponible lo permite) con otras evidencias como el reporte del Observatorio del Programa Presidencial de Derechos Humanos y DIH y fuentes de información como periódicos y diarios.

Según López, algunos de los narcotraficantes del norte del Valle lograron un rápido crecimiento económico y militar, el cual usaron para traficar de manera independiente a las actividades del Cartel de Cali, hasta que por diferencias con los grandes jefes de este cartel, decidieron organizarse y formar una estructura similar, la cual tuvo una fase de enfrentamientos con el Cartel de Cali. Es así como se forma el Cartel del Norte del Valle, con personajes como Wilber Varela, Juan Carlos Ramírez alias ‘Chupeta’, Iván Urdinola alias ‘Enano’, Hernando Gómez alias ‘Rasguño’ entre otros. La fase de operaciones de este cartel comprendió una época violenta, principalmente a finales de los años 90’s en donde los asesinatos, las venganzas, las incursiones militares formaban parte del repertorio de coerción para quedarse no solo con el territorio de sus enemigos, sino también con los principales activos financieros de sus víctimas y de la información de rutas que estas poseían. Las interacciones aquí expuestas permiten establecer vínculos y su tipo de relación, es decir, si cooperan dentro del cartel o si son rivales y compiten por el negocio, por lo que se pueden clasificar las relaciones en signos (+) o (-) respectivamente, permitiendo el estudio de la evolución de la estructura criminal, a través de las redes de signo y de los respectivos cambios de signos en las relaciones presentes.

La Red del Narcotráfico en el Cartel del Norte del Valle (Segura, 2011): Este documento es un trabajo de investigación realizado por José Luis Segura en el año 2011, el cual presenta como trabajo de grado para
optar por el título de economista en la Universidad del Valle. El objetivo principal del autor es realizar un estudio del Cartel del Norte de Valle, usando la teoría de redes sociales como marco teórico para establecer si se cumple la propiedad de los *mundos pequeños* en esta organización. El autor se basa en los recursos anteriormente expuestos, para construir la red del cartel, en donde posteriormente somete los datos a mediciones de tipo estructural, como lo es el *clúster jerárquico* (Watts & Strogatz, 1998) para determinar que se cumplen las condiciones necesarias para poder denominar una red, como una de mundos pequeños.

Como objetivo secundario, el autor realiza una modelación de los beneficios que los agentes según su tipo de actor pueden recibir por el ejercicio de esta narcoactividad. Se propone tratar según su actividad dentro de las organizaciones, es decir, si son productores, traficantes, se dedican a la defensa de los jefes y a la corrupción, además de personas que se dedican a una o dos actividades, por ejemplo, a la producción y a la defensa. A partir de esta clasificación de los nodos, los grupos o clústeres, se dividen en estructuras menores denominadas redes de producción-tráfico y corrupción-defensa, en donde es a estos actores que se les propone una función de beneficios. La conclusión a la que llega el autor es que las estructuras menores que pertenecen al cartel, generan incentivos para que los individuos ingresen a la narcoactividad, por ejemplo en el ala militar, recibiendo menores pagos, pero motivados por las expectativas de ascender verticalmente en la organización y obtener mejores beneficios en el futuro, de acuerdo con lo planteado en (Estrada, 2007) y (Levitt & Venkatesh, 1998).

Diferentes artículos periodísticos publicados en los principales diarios de la nación como lo son: El Espectador, Semana, El Tiempo y El País. Estas fuentes de información permiten ayudar a establecer el orden cronológico de los hitos más importantes dentro de la historia de los carteles colombianos. Información como fechas de las capturas, judicializaciones o fallos de los órganos judiciales, muertes, entre
muchos otros datos son revelados en sus artículos, conformándose como fuentes primarias para la realización de la evolución de la red.

5.2 Procedimiento

Una vez solucionado el problema de las fuentes de información se procede a construir la red, parte de este trabajo ya se ha realizado en (Segura, 2011). El autor construye la red a partir de las alianzas de los actores que intervinieron en el negocio del narcotráfico, siguiendo la metodología de la teoría de redes, es decir, asignar el valor de 1 cuando dos actores (nodos) presentan un vínculo y 0 cuando no están conectados. A partir de esto se construye la matriz de adyacencia y se definen los roles o tipos de actores posibles en la red a estudiar. El paso siguiente es convertir estos vínculos o enlaces a una red de signos, según lo planteado por Cartwright y Harary (1956). Una vez se obtienen los signos de todos los enlaces de la red, el paso a seguir es el estudio de aquellos vínculos y su relación con la teoría del balance estructural, con el método del modelamiento de bloques, para ello se sigue la metodología propuesta en De Nooy et al. (2005).

El proceso de transformar la matriz de adyacencia en una matriz de signos se debe realizar un determinado número de veces para poder obtener la red en diferentes ventanas de tiempo. En este sentido, la red propuesta en Segura (2011) sobre el CNV, es planteada como una red estática o para un solo periodo de tiempo, y una de las contribuciones de este trabajo es convertir la red del CNV en una red dinámica. Es decir, una red en donde los nodos y los vértices evolucionan a lo largo del periodo de estudio (1993-2004), a través de hitos. Para ello se definieron siete momentos claves dentro de la historia del CNV, esta partición en hitos se debe al hecho de que la información suministrada por las fuentes del punto anterior, no es continua en el tiempo y, por ende, no se tiene la información exacta por periodos de tiempo equidistantes.

Para darle solución a este inconveniente, de acuerdo a la narrativa en las fuentes de información y el uso de noticias en diferentes diarios del país, se establecen un conjunto de eventos o hitos principales en el desarrollo de los hechos, teniendo como criterio para su elección la mayor proximidad –en
tiempo– entre un evento y otro. Además, se tuvo en cuenta que entre un evento y otro, se pudiese captar el mayor número de cambios de signos entre un par de nodos cualesquiera. Es decir, de acuerdo a la cronología del CNV, los actores formaban alianzas y venganzas entre sus mismos miembros, por lo que se tuvo en cuenta poder obtener el mayor número de cambios de alianzas a venganzas o viceversa, entre los eventos elegidos.

El anterior punto es crucial en la metodología propuesta en este documento ya que a través de la narrativa de los principales sucesos del CNV se plantean el conjunto de nodos y enlaces, permitiendo definir si las relaciones eran de amistad u hostilidad, lo que permite convertir la red en una red de signos, lo cual representa una diferencia fundamental con la metodología propuesta en Segura (2011), además del hecho de que se ordena la información de enlaces, nodos y signos, cronológicamente por eventos permitiendo ver la evolución de la red, lo cual no se realiza en el mencionado documento. Así pues, los principales eventos definidos en esta metodología son:

- **Asesinato de Pablo Escobar**: Con la guerra que libraba Pablo Escobar contra el Estado y el Cartel de Cali, se creó una alianza entre narcotraficantes y las autoridades para dar con su captura; a esta alianza se le conoció con el nombre de “Los Pepes” (Lopéz, 2008). Con la muerte de este icónico personaje, el Cartel de Cali intentó negociar el desmonte de la narcoactividad en el departamento del Valle, pero fracasaron en su intento, generando tensiones entre los miembros más nuevos del cartel, los cuales se agruparon en lo que coloquialmente se conoce como el CNV. La medición del primer evento se realiza antes de la muerte de Pablo Escobar, para poder incluir el nodo en la red y sus signos correspondientes, ya que, de lo contrario no se podría incluir y se perdería esta valiosa información. Diciembre de 1993.

- **Asesinato de José “Chepe” Santacruz**: Después de la muerte de Escobar, el CNV le declaró la guerra al Cartel de Cali, llevando como resultado la muerte de alias “Chepe” Santacruz. La medición del segundo evento se realiza antes de la muerte de este personaje debido a la misma razón que la primera. Marzo de 1996.
Asesinato de Pacho Herrera: Hélmér Herrera Buitrago alias “Pacho Herrera” fue uno de los miembros más poderosos del Cartel de Cali, a quien Wilber Varela le declaró la guerra. La confrontación entre estas dos organizaciones dio origen a una de las etapas más violentas en el departamento del Valle. La medición se realizó antes de la muerte de Herrera por la misma razón que en el primer y segundo evento. Noviembre de 1998.

Varela y Tocayo vs Rasguño y Patiño: Estos cuatro narcotraficantes desarrollaron una disputa al interior del CNV a mediados del año 2000, originando alianzas estratégicas entre los miembros de la organización y generando tensiones dentro de la red. La medición se realiza aproximadamente en julio del 2000.

Asesinato de alias “Cuchilla”: Juan Carlos Ortiz alias “Cuchilla” según las fuentes citadas, fue socio y amigo de alias “Chupeta” el cual lo traicionó, permitiendo la eliminación de este actor. Septiembre de 2001.

Varela vs Miguel Solano: El enfrentamiento que sostuvo Wilber Varela contra alias “Miguelito” a finales del año 2002 desembocó en el asesinato de este último narcotraficante, el cual se había hecho a enemistades, debido a su condición de doble agente del gobierno de Estados Unidos. A este evento se le suma la muerte de Iván Urdinola en extrañas condiciones, lo que dio como resultado la alianza entre la familia Henao y Varela para reclamar las propiedades del difunto y el enojo de alias “Don Diego” por dicho reclamo. Diciembre de 2002.

Diego Montoya vs Varela: Debido a la alianza entre Lorena Henao, esposa del difunto Iván Urdinola, y Wilber Varela para quedarse con los bienes del narcotraficante, Diego Montoya se alió con la familia Urdinola y le declaró la guerra a Varela en agosto de 2003, sin embargo, los eventos violentos que desencadenaría esta nueva confrontación se dieron principalmente durante el año 2004. Enero 2004.

Teniendo en cuenta los hitos definidos anteriormente, el procedimiento a seguir es establecer los signos que tenían las relaciones formadas por los narcotraficantes. Así pues, se generan siete ventanas en donde se remueven los nodos y los enlaces que han sido eliminados y se cambian los signos
dependiendo si los actores colaboraban entre sí o se encontraban en alguna disputa. El resultado es la evolución de los carteles y de las interacciones entre sus miembros desde el año 1993 hasta el año 2004, en siete eventos que marcaron la historia del CNV y los cuales se analizan bajo la técnica de modelamiento por bloques.

Como se mencionó en la sección 4.4 el *blockmodel* de una red, consiste de dos partes fundamentales, la primera es la partición que se realiza de la red, definida como la reorganización y enumeración de los vértices presentes; y la otra, es la imagen de la matriz que se va a definir como modelo para encontrar los bloques en la red. Es decir, la partición asigna a los vértices características o clases equivalentes que dividen la matriz de adyacencia en bloques, y la matriz de imagen especifica los tipos de relaciones dentro y entre los grupos (clústeres) dado que en ella se especifican los tipos de bloques y cuando pueden ocurrir dichos bloques (Batagelj & Mrvar, 1998).

A continuación, se explican los pasos como siguen:

Paso 1: Especificar el número de clases en la red, en este caso se especificarán dos clases que obedecen al modelo centro-periferia, en donde los nodos que pertenecen al centro, se encuentran enlazados entre sí, mientras que los nodos que pertenecen a la periferia, no se encuentran directamente conectados. Este modelo se escoge debido a que de todas las opciones para especificar el orden de los bloques y la relación que tienen estos, en el Software Pajek, es la que mejor se ajusta a los datos obtenidos. Se debe aclarar que se corrieron diferentes modificaciones y preespecificaciones disponibles. Sin embargo, en algunas de las opciones disponibles era difícil establecer, por ejemplo, si un bloque era positivo o negativo, por lo que no se ajustan como el modelo mencionado.

Paso 2: Fijar la matriz de imagen, en este caso se fija el número de bloques de acuerdo al número de clases que son dos, teniendo en cuenta que son seis los grandes clústeres que se conocen a priori. Estos clústeres se muestran en el siguiente acápite en la tabla 1, por lo que se hace necesario crear un archivo de clúster (.clu) en donde a cada
nodo se le asigna la pertenencia a uno de estos seis grupos. En este paso se calcula el nivel o puntaje de error, que indica que tan alejada está la matriz de la red real de la matriz ideal. Para ello, se cuentan el número de enlaces que no pertenecen al bloque, por ejemplo, positivo o negativo. En el caso del equilibrio de equivalencia estructural, se cuentan los enlaces que faltan en los bloques que deben estar completos y los enlaces que se encuentran en los bloques que deben estar vacíos.

Paso 3: En este paso se escoge la partición de acuerdo a las clases establecidas, en las que se produce el menor puntaje de error con lo que se conseguirá el mejor ajuste de la matriz real a la matriz ideal. Este paso lo realiza el software automáticamente al asignar vértices aleatoriamente a los tipos de clases, se calcula el puntaje de error comparando la matriz resultante con la matriz ideal. Luego se intenta minimizar el puntaje obtenido moviendo otro vértice elegido al azar en otra clase o dos vértices elegidos al azar en diferentes clases y el proceso se ejecuta hasta que ya no se pueda minimizar el puntaje de error. Se especificaron 1,000 y 10,000 repeticiones para obtener el puntaje de error, sin embargo, al conocer la pertenencia de un nodo a su clúster correspondiente, con pocas interacciones se lograba encontrar dicha puntuación.

En el último paso se pueden asignar ponderaciones a los tipos de errores, pero en este trabajo, la ponderación será igual en ambos casos (0,5) dado que no se encuentra una razón para determinar que un error en un bloque positivo tenga mayor impacto que un error en un bloque negativo o viceversa. El puntaje de error arrojado por el proceso de optimización del modelamiento por bloques, dirá qué tan lejos del equilibrio se encuentra la red del CNV, indicando qué tan balanceada o desbalanceada, puede llegar a estar la red en el evento asignado. El procedimiento fue propuesto por primera vez en (Batagelj, Doreian, & Ferligoj, 1992) y el algoritmo se desarrolló en (Batagelj & Mrvar, 1998) para el programa de análisis de redes Pajek, pero solo en las versiones más recientes se puede ejecutar a través de las ventanas que ofrece la interfaz gráfica del software.
Es importante resaltar que los pasos antes mencionados se realizan para cada uno de los siete eventos, es decir, se especifican cada uno de los parámetros en el software para lograr realizar diferentes mediciones en los siete diferentes eventos y poder analizar la evolución de esta medida, junto con la evolución de la red.

6. Resultados

6.1 La red

A continuación, en la tabla 1 se muestran los seis grupos que se encontraban organizados y relacionados, tanto en el negocio del narcotráfico, como con el CNV. De esta manera se asocia cada uno de los actores involucrados en la red a alguno de los grupos o clúster y con ello se realizan las diferentes particiones de la red, para el modelado por bloques. En este punto se debe resaltar el hecho de que conocer a priori la pertenencia de un nodo a uno de estos grupos, facilita el trabajo a la hora de realizar el modelado dado que, en este caso, ya no se hace necesario crear particiones aleatorias como sucede normalmente en redes en las cuales dicha pertenencia no se tiene o no es clara, por lo tanto, el modelamiento en las redes de signo es mucho más efectivo. También se debe tener en cuenta que esta organización por clústeres no es estática, puesto que los nodos se remueven en orden cronológico, de acuerdo a como fueron eliminados o capturados, y que la pertenencia de un nodo a un clúster no significa que no pueda formar alianzas con los miembros de otro grupo en contra de los miembros de su misma organización, puesto que como se ha mencionado el factor clave en este estudio es precisamente la dinámica que generan las interacciones estratégicas de los nodos para formar alianzas con miembros de su misma organización o cualquier otra.

<table>
<thead>
<tr>
<th>Clúster</th>
<th>Organización</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cartel de Medellín</td>
<td>Amarillo</td>
</tr>
<tr>
<td>2</td>
<td>Cartel de Cali</td>
<td>Verde</td>
</tr>
<tr>
<td>3</td>
<td>Cartel del Norte del Valle</td>
<td>Rojo</td>
</tr>
<tr>
<td></td>
<td>Paramilitares</td>
<td>Azul</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>Guerrilla</td>
<td>Rosado</td>
</tr>
<tr>
<td>5</td>
<td>Cartel de México</td>
<td>Blanco</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Como se puede observar, en la ilustración 7 se puede ver que la red se encuentra configurada por colores, estos agrupamientos de colores obedecen a los establecidos en la tabla 1, por ende, cada nodo tiene un color específico de acuerdo al grupo al que pertenece. Por ejemplo, en la esquina inferior izquierda se encuentran los nodos de color amarillo, allí se encuentran personajes como Pablo Escobar (PE) que pertenecieron al “extinto” Cartel de Medellín. En la esquina inferior derecha se encuentran personajes como Iván Urdinola Grajales (IU) reconocido miembro del Cartel del Norte del Valle, de igual manera para cada uno de los 122 nodos que hacen parte de la primera medición realizada.

En el anexo 1 se puede identificar la lista total de nodos usados en la primera medición, esta lista corresponde al total de 122 nodos los cuales cuentan en su primera columna con su numeración, la etiqueta empleada para identificar los nodos en los diferentes eventos en el software, el nombre y/o apodo del nodo, el grupo al cual pertenece previamente identificado en la tabla 1 y el grado de conectividad del mismo, que se resumen en el número total de enlaces que posee el nodo con el resto de la red.

Un hecho importante a resaltar en este punto es que se presentan los seis clústeres mencionados en la tabla 1 y no solo el clúster del CNV. Esto se debe a que la medida de balance estructural requiere, como se mencionó en el apartado de metodología, de la definición de un conjunto de bloques los cuales se definen a partir de las permutaciones que realiza el software por agrupamientos. Por tanto, una medición de qué tan balanceada se encuentra una red, para un solo grupo es una medida que hasta cierto punto puede carecer de sentido dado que es precisamente la interacción y los tipos de

5 En el siguiente enlace se puede descargar la información en formato .net para los siete eventos definidos anteriormente. En total se encuentran ocho archivos, uno por cada evento en orden cronológico y un archivo con la partición por clústeres. Enlace: https://goo.gl/bhMCD8
enlaces que se forman con los otros grupos lo que le dan el mencionado balance.

El otro aspecto relevante a tener en cuenta en este conjunto de análisis, es que las acciones que un nodo realice, pueden estar influenciadas por las decisiones que otro nodo por fuera de su grupo también realice, a este comportamiento se le llama estratégico. Un ejemplo de ello se puede ver en la guerra que sostuvo alias Pacho Herrera (PH) representante del Cartel de Cali contra el CNV; la alianza de este último grupo con los miembros de grupos paramilitares jugó un papel clave para el desenlace de dicha confrontación. Así pues, los signos que adoptan los nodos corresponden a ese comportamiento estratégico, en donde se realizan alianzas y venganzas las cuales generan, por supuesto, las tensiones en la red, modificando el balance que se haya logrado previamente.
Ilustración 5. Grafo de la red en el evento 1

Fuente: Elaboración propia.
En la tabla 2 se encuentran un conjunto de estadísticas descriptivas de la red para los siete eventos en los que se realizó la medición. En la primera columna se encuentra el número del evento en orden descendente; en la segunda el número de nodos presentes en cada evento; en la tercera columna se encuentra especificada la cantidad total de enlaces o vértices en cada evento. Adicionalmente, en la cuarta columna se especifica el Coeficiente de Clúster y las distancias promedio y más larga entre cualquier par de nodos de la red para cada evento.

Tabla 2. Estadísticas Descriptivas

<table>
<thead>
<tr>
<th>Evento</th>
<th>Nodos</th>
<th>Cantidad de Enlaces</th>
<th>Coeficiente de Clúster</th>
<th>Distancia promedio</th>
<th>Distancia más larga</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>122</td>
<td>596</td>
<td>0,65894566</td>
<td>2,5968</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>547</td>
<td>0,66615921</td>
<td>2,4994</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>482</td>
<td>0,67610899</td>
<td>2,5063</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>400</td>
<td>0,68715357</td>
<td>2,5468</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>400</td>
<td>0,68715357</td>
<td>2,5468</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>89</td>
<td>371</td>
<td>0,68081655</td>
<td>2,5566</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>85</td>
<td>311</td>
<td>0,67868380</td>
<td>2,6253</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Como se puede observar en la anterior tabla, el número de nodos se reduce a medida que avanzan los eventos definidos, esto se debe a que los enfrentamientos entre los diferentes carteles, llevó a que varios de sus miembros fueran asesinados y por lo tanto removidos de la red, lo mismo ocurre con el número de enlaces que decaen debido a la eliminación de los nodos.

Siguiendo la metodología propuesta por Segura (2011), se construye la red conjunta de carteles y se encuentra un coeficiente de agrupamiento para cada evento. El resultado encontrado es que el coeficiente de agrupamiento de Watts y Strogatz (1998) para los siete eventos se mantiene en el rango 0,65 – 0,68, resultado muy similar al hallado por Segura (2011), pero con la diferencia de que la red tratada por este autor cuenta con 120 nodos y solo se evalúa
para un periodo o ventana de tiempo fija. En este sentido, la tabla 2 permite ver el desenvolvimiento de la red, lo cual permite a este trabajo distanciarse de la metodología propuesta en Segura (2011), ya que las mediciones se realizan para los siete eventos definidos entre los años 1993 y 2004. Con lo anterior se logra captar no solo la eliminación de enlaces y nodos o el cambio en sus signos (amistad-hostilidad), lo que en términos generales se le podría denominar evolución, sino también corroborar que esta medida de agrupamiento se mantiene en un promedio de 0,6746 y que la distancia promedio entre cualquier par de nodos dentro de la red se mantiene en un promedio de 2,554, lo que permite asumir a la red del CNV, como una red con la propiedad de *mundos pequeños* en el periodo de tiempo de los eventos estudiados.

Por otro lado, en la gráfica 7 se muestra el grafo del primer evento en donde se resalta en color verde los nodos con mayor grado de conectividad en la red, en el lenguaje usado por la teoría de redes a estos nodos se les denomina “*Hubs*”. Como es de esperarse, los nodos con mayor grado dentro de la red son cinco de los grandes capos del CNV, estos son: Víctor Patiño (VP) el cual negoció su condena con el gobierno de Estados Unidos; Orlando Henao (OH), considerado el jefe del CNV hasta que muere por una venganza por parte de la familia Herrera; Wilber Varela (WV), considerado el sucesor de Orlando Henao en la organización; Hernando Gómez (HGR) alias “Rasguño” y Diego Montoya alias “Don Diego” que es el nodo que mayor grado de conectividad logra en los siete eventos analizados y que posteriormente logra ganar la guerra contra Varela gracias a la colaboración de personas de confianza del fallecido.
6.2 Medición del Balance

Los resultados de aplicar la metodología del modelamiento por bloques (De Nooy et al., 2005) y siguiendo el planteamiento propuesto en (Doreian & Mrvar, 2015) para encontrar una medida de balance estructural en una red de signos se presenta a continuación. La tabla 1 muestra en su primera columna el evento en el que se realizó la medición; la segunda columna muestra la reducción proporcional del error, que es la proporción de errores contabilizados en los bloques, esta medida por definición se encuentra en el rango 0-1. La medida se interpreta de acuerdo al coeficiente obtenido, en donde entre más cercano a 1 sea, implica que un mayor número de signos se encuentran en un bloque que no le corresponde, y por tanto, mayor será tensión en la red, luego, mayor es el nivel de desbalance. La tercera columna indica el número total de inconsistencias encontradas por el algoritmo, la cual se espera que a mayor número de las inconsistencias, mayor sea el nivel de tensión que deben soportar los miembros de una red.
Tabla 3. Resultados de Medición de Balance Estructural

<table>
<thead>
<tr>
<th>Evento</th>
<th>Medida Balance</th>
<th>Total de inconsistencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,33333</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0,83333</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0,86957</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0,68182</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0,70769</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>0,78571</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>0,82857</td>
<td>12</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Ilustración 7. Comportamiento de las medidas de balance a través de los eventos

Como se puede observar en la ilustración 7 se muestra el comportamiento de las dos medidas de balance en los siete eventos definidos\(^6\). La línea azul muestra el resultado de la medida de balance basada en el modelamiento por bloques, mientras que la línea roja muestra el total de inconsistencia en el total de bloques de la red. Cabe resaltar que el total de inconsistencias (línea roja) se reescaló al intervalo 0-1 para que se pudieran observar mejor los cambios en ambas medidas. Allí se puede observar un comportamiento peculiar en cuanto al número total de inconsistencias, esto es, que en el primer evento las tensiones son bastante mayores que en el tercero y que la medida en el séptimo evento es menor que en el sexto. Este comportamiento se puede

\(^6\) En los anexos 2 a 8 se encuentran las salidas arrojadas por el software Pajek para los datos analizados en los siete eventos. Los resultados se condensaron en la tabla 3.
explicar a través de la línea de tiempo de los sucesos ocurridos. Es decir, en primera instancia la tensión creada por la guerra entre el Cartel de Medellín y el Cartel de Cali es captada en este evento, mientras que el segundo y tercero, corresponde a la conformación del CNV y la confrontación contra el Cartel de Cali. Después del tercer evento se dispara el total de inconsistencias debido a la primera guerra interna del CNV, que corresponde al enfrentamiento entre Wilber Varela (WV) alias “Jabón” y Luis Ocampo (LOT) alias “Tocayo”, contra Hernando Gómez (HGR) alias “Rasguño”. Es decir, la guerra entre estos nodos hace que las tensiones y los signos negativos al interior del CNV aumenten, caso que no debería ocurrir, por lo que dichos signos se cuentan como inconsistencias, haciendo que el total de inconsistencias de toda la red aumente.

En cuanto al sexto evento, este corresponde en primera instancia a la muerte en extrañas condiciones de Iván Urdinola (IU) y en segunda a la guerra que sostuvo Wilber Varela (WV) contra Miguel Solano (MS), lo que desencadenó en alianzas entre miembros de la familia Henao con Varela y posteriormente, en último evento, en el enfrentamiento de este último personaje contra Diego Montoya (DM) y la familia Urdinola, dando como resultado la muerte de Wilber Varela, el cual se considera como el hito del derrumbamiento del CNV, puesto que para esa fecha o sus miembros se encontraban negociando en Estados Unidos con la DEA o habían muerto a causa de los enfrentamientos creados entre sus integrantes.

Entender la medida de balance y el número total de inconsistencias es relevante en este trabajo puesto que representa el objetivo principal de la metodología propuesta en el presente. La idea fundamental era analizar el nivel de balance presente en la red, a través de las tensiones que se generan por las interacciones entre los nodos, y si estas medidas concordaban con los hechos históricos, por lo que a grandes rasgos se puede considerar que la medida de balance es efectiva ya que en el primer evento toma un valor de 0,3333 lo que indica poca presencia de tensiones -poco nivel de desbalance-, mientras que en el tercer evento pasa a tomar un valor de 0,8695 representando un cambio significativo en dicha medida, lo que concuerda con la narrativa de los hechos,
dado que en ese evento, la presencia de tensiones en la red eran mayores y por ende el nivel de desbalance alto.

Al analizar el cambio entre la primer medida de balance y la correspondiente al último evento, se puede observar que en términos generales, hay un cambio significativo (pasa de 0,3333 a 0,8285), lo que indica que las tensiones generadas en la red aumentaron a través de los eventos estudiados, reflejando el aumento de las hostilidades entre sus miembros y por ende de la violencia ejercida por los mismos. De acuerdo a lo anteriormente expuesto, es plausible entonces pensar en que con este cambio significativo en la medida de balance, que la red del CNV se podría fragmentar en algún punto, debido a la presencia de dichas tensiones, como evidentemente se muestra en la narrativa de los hechos, en donde esta estructura criminal se desintegró tal y como se conocía, pero que no significó la desaparición del negocio del narcotráfico, sino más bien una mutación del mismo, como lo aseguran Salazar y Frasser (2013).

7. Conclusiones

El método de modelamiento por bloques es una técnica que permite a través del agrupamiento de nodos, medir el nivel de balance de una red, de acuerdo a la teoría del balance estructural presentada en Cartwright y Harary (1956). Esta técnica resulta ser especialmente eficiente, cuando se conoce a priori la cantidad de clústeres existentes en una red y la pertenencia de cada nodo a cada uno de los clústeres, por lo que el algoritmo planteado por Doreian y Mrvar (2015) converge rápidamente a la solución después de pocas interacciones.

Para el caso de la red estudiada en este documento, el resultado esperado es que las tensiones por las delaciones cometidas por miembros del CNV, al cual se le denomina popularmente como el cartel de los sapos, den como resultado medidas que indiquen la falta de balance de acuerdo a las tensiones presentes en la estructura. Lo que muestran los resultados obtenidos a través de la metodología propuesta, es compatible con los resultados esperados dado que la medida de proporción del error es, por ejemplo, en el segundo, tercer y séptimo evento, especialmente alta (0,8333 - 0,86957 y 0,82857)
respectivamente. Para los otros eventos ronda en promedio 0,72 unidades. Estos resultados al estar más cerca de la unidad (1), indican que las tensiones presentes en la red son considerables pero la presencia de las mismas, no implica la desaparición de la estructura.

De acuerdo con lo anterior, los resultados pueden servir como soporte para las hipótesis como la de Salazar y Frasser (2013), quienes plantean que el aumento en los índices de violencia para el periodo 2008-2013, posterior a este trabajo, no se deben necesariamente al ajuste de cuentas por parte de los miembros de estas organizaciones, sino más bien al hecho de que dada la configuración que adquirieron este tipo de estructuras en las décadas de los años 90 y 2000, con los frecuentes enfrentamientos entre sus miembros, se organizaron subestructuras de seguridad que posteriormente quedaron a la deriva con el encarcelamiento o desaparición de sus jefes y por tanto hoy se dedican a actividades paralelas como la extorsión y las oficinas de cobro.

Según los resultados encontrados en este trabajo, aunque la medición de balance indica la presencia considerable de tensiones en la red, no implica necesariamente la desaparición de la estructura principal del narcotráfico; por lo que hasta cierto punto, la eliminación de nodos con alto grado de conectividad, no implica la destrucción de la red o clústeres de la misma, sino más bien lo que genera son “mutaciones” de la misma (Salazar & Frasser, 2013). Para lograr estas “mutaciones” es necesario que se presenten condiciones como el alto nivel de agrupamiento de la estructura, la remoción de nodos, el aprendizaje del negocio a diferentes niveles por parte de los nodos en la parte baja de la escala jerárquica y distancias cortas entre cualquier par de nodos, para que los mecanismos de violencia usados por estas estructuras sean efectivos.

Por otro lado, se puede observar que los resultados de los coeficientes de agrupamiento en los diferentes eventos son similares a los encontrados en Segura (2011), por lo que se puede asegurar que para la red del CNV se cumplía la propiedad de los mundos pequeños para el periodo 1993-2004. En este sentido, este trabajo aporta elementos importantes para el estudio de la evolución del CNV, como lo es volver dinámica su estructura, la cual se
encuentra organizada en forma jerárquica y altamente agrupada, en la cual se crean las tensiones y se toman decisiones estratégicas por parte de sus miembros para seguir en el negocio.

Las interacciones que realizan los nodos en la red, en donde se crean relaciones que mutan de acuerdo a la conveniencia de cada nodo, son los principales generadores de tensiones en la red, puesto que una decisión, una alianza o venganza contra algún miembro del cartel, hacía que los demás miembros también modificaran sus decisiones, generando en el camino, enlaces negativos que conllevaban a intensificar dichas tensiones. Un ejemplo claro de estas, era la forma en la que los narcotraficantes se dedicaban a eliminar a los nodos que consideraban delatores, lo que generó un ambiente de zozobra entre los participantes y que conllevaba a crear alianzas estratégicas para sobrevivir a los ataques que realizaban los demás miembros.

La metodología propuesta para trabajar la información de los nodos, los enlaces y sus tipos (amistad – hostilidad), permitió obtener la evolución de la red del CNV a través de los siete eventos previamente definidos, en los cuales la red sufre una transformación que pasa por el cambio del tipo de enlaces, la eliminación de los mismos y la remoción de nodos. Esto se puede ver detenidamente en las gráficas de los anexos 2 al 9 en donde se pueden observar los grafos de los eventos 2 al 7. Esta evolución también se puede ver de manera numérica en la tabla 2 del acápite anterior, en donde en el primer evento, la red contaba con 122 nodos y 596 enlaces, mientras que en el séptimo evento la red contaba con 85 nodos y 311 enlaces, indicando una reducción considerable de los elementos estudiados. Esta reducción de los nodos es muestra del aumento de la violencia para el periodo entre 1993 y 2004 dado que la mayoría de los 37 nodos que fueron eliminados de la red, se debe a que fueron asesinados, y con ellos muchos otros actores como familiares, amigos, testaferreros, escoltas, entre otros, por lo que este aumento en los niveles de violencia emerge como un fenómeno que resulta de las múltiples interacciones de los nodos en este sistema complejo llamado Cartel del Norte del Valle.
Las redes de signo representan un avance en el estudio de redes sociales al permitir establecer tipos de relaciones entre los nodos, las cuales permiten a su vez, estudiar cuestiones como el balance estructural en una red determinada, cosa que con otras metodologías disponibles, puede significar una tarea mucho más compleja. El CNV representa un caso de estudio apropiado para la aplicación de este tipo de redes, dado que las relaciones entre los miembros de la red, se delimitaban solo a estas dos opciones, amistad-hostilidad. Además del hecho de que gran parte de su historia se encuentra documentada, entender la estructura, la forma en la que operan los miembros de estas organizaciones, las alianzas, sus incentivos y motivaciones, su evolución, entre otros aspectos, son tarea fundamental para obtener una visión general del negocio del narcotráfico, puesto que este sigue siendo un fenómeno que a hoy día, afecta diversas esferas a la sociedad colombiana.

Entender cómo se generan las tensiones de la red y cómo se van formando las alianzas estratégicas entre cualquier par de nodos, es también una tarea importante para entender cómo afectan dichas tensiones la estructura y balance de una red de narcotraficantes, esto puede servir como insumo para el planteamiento de políticas públicas que busquen generar alternativas a las ya conocidas políticas de represión a la oferta como el Plan Colombia, que si bien logró reducir la narcoactividad en los años posteriores a los planteados en este trabajo, no ha logrado acabar o desincentivar dicha actividad.

Desde el punto de vista de este trabajo, la violencia observada entre los años 1994 y 2008, que se estima dejó alrededor de 57,000 muertos (Mejía, 2016), surge como un fenómeno emergente de las tensiones generadas dentro de las redes de narcotráfico como consecuencia de las interacciones estratégicas que realizan los nodos y que no solo afectan a los nodos que toman decisiones, sino también a sus familiares y allegados, llegando incluso a afectar a personas que no se encuentran involucradas con esta actividad ilegal.

El modelamiento por bloques es una herramienta que tiene como objetivo principal encontrar conjuntos de nodos con características similares dentro de una red, los cuales puedan explicar el comportamiento global de la misma. En el presente trabajo, la implicación de trabajar con esta metodología y las redes
de signo, es precisamente el hecho de poder entender a través de una medida como la de balance estructural, cómo cambios en las interacciones entre los nodos, pueden generar tensiones, y estas tensiones generar un aumento de la violencia, que no sólo se puede explicar como la suma lineal de las interacciones entre los nodos, sino como un fenómeno emergente producto de todas las interacciones estratégicas, dentro de las cuales las alianzas, cambios en las alianzas y venganzas entre otros, afectan a su vez a los demás miembros de la red, lo que reproduce el aumento en los niveles de violencia aún más. Es por esto que estas herramientas y metodologías como la teoría del balance estructural, pueden explicar la violencia y las tensiones generadas por la narcoactividad, como fenómenos emergentes, que son más que la suma lineal de las interacciones estratégicas, y que no pueden ser entendidos simplemente analizando el rol o la cantidad de enlaces de un nodo.

Debido a que los cambios de signo que representan los cambios de un tipo de lazo a otro, de acuerdo a la interacción que mayor beneficio le representa a cada nodo en un momento específico del tiempo, son generadores de tensiones, estas situaciones de estrés impulsan a los nodos a que tomen decisiones como, por ejemplo, enfrentarse con otro miembro, permite entrever una relación entre las tensiones presentes en la red y el aumento en los indicadores de violencia como el aumento en la tasa de homicidios. Es por lo anterior que se anima en posteriores documentos a analizar la relación que tienen las tensiones a través de los cambios de signos con el aumento de la violencia en el periodo de tiempo de 1993 a 2004, siguiendo la línea del presente documento, en donde se plantea que la violencia en este periodo de tiempo nace como un fenómeno emergente de la interacción entre las partes de la red, y a explorar una metodología para encontrar una medida de violencia dentro de la red que ayude a esclarecer con mayor rigurosidad esta relación.

8. Bibliografía

9. Anexos

Anexo 1. Tabla de nodos

<table>
<thead>
<tr>
<th>Nodo</th>
<th>Etiqueta</th>
<th>Nombre</th>
<th>Clúster</th>
<th>Grado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"PE"</td>
<td>Pablo Escobar</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>"JLO"</td>
<td>Jorge Luis Ochoa</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>"GRO"</td>
<td>Gilberto Rodriguez Orejuela</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>"MRO"</td>
<td>Miguel Rodriguez Orejuela</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>"JCS"</td>
<td>Jose "Chepe" Santacruz</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>"PH"</td>
<td>Pacho Herrera</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>"OH"</td>
<td>Orlando Henao</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>"VP"</td>
<td>Víctor Patiño “la fiera”</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>"LOT"</td>
<td>Luis Ocampo “Tocayo”</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>"DE"</td>
<td>Efrain Hernandez "Don Efra"</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>"HGR"</td>
<td>Hernando Gomez "Rasguño"</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>"DM"</td>
<td>Diego Montoya "Don Diego"</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>"IU"</td>
<td>Ivan Urdinola "Enano"</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>"CH"</td>
<td>Juan Carlos Ramirez "Chupeta"</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>"JCO"</td>
<td>Juan Carlos Ortiz "Cuchilla"</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>"WV"</td>
<td>Wilber Varela</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>"HR"</td>
<td>Hernando Restrepo "HR"</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>"JB"</td>
<td>Javier Baena</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>"NPB"</td>
<td>"Negro" Pabon</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>"PN"</td>
<td>"El Piña"</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>"GB"</td>
<td>"Gabi"</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>"CHP"</td>
<td>"Chapola"</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>"PCS"</td>
<td>"Pecoso"</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>"BMT"</td>
<td>Brances Muñoz "Tyson"</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>"CAA"</td>
<td>Carlos Alzate "El Artete"</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>"LNL"</td>
<td>"Leonel"</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>"OU"</td>
<td>Oscar Uribe</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>"OP"</td>
<td>Octavio Pabon</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>"NU"</td>
<td>Nelson Urrego</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>"FGN"</td>
<td>Fernando Galeano "El negro"</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>"FKM"</td>
<td>Francisco Kiko Moncada</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>"MCC"</td>
<td>Mario Castaño "Chopo"</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>"DB"</td>
<td>Diego murillo Bejarano "Don Berna"</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>34</td>
<td>"FC"</td>
<td>Fidel Castaño</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>"VC"</td>
<td>Vicente Castaño</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Código</td>
<td>Nombre completo</td>
<td>Puntos</td>
<td>Partidas</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>36</td>
<td>"CC"</td>
<td>Carlos Castaño</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>37</td>
<td>"ILN"</td>
<td>Ignacio Londoño "Nacho"</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>38</td>
<td>"AGL"</td>
<td>Alberto Giraldo "Loco"</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>39</td>
<td>"EMR"</td>
<td>Elizabeth Montoya "Monita Retrechera"</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>40</td>
<td>"GVA"</td>
<td>Guillermo Villa Alzate "Super Raton"</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>41</td>
<td>"JAS"</td>
<td>Jesús Amado Sierra</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>42</td>
<td>"PAA"</td>
<td>Phanor Arizabaleta Arzayuz</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>43</td>
<td>"HL"</td>
<td>Henry Loaiza</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>44</td>
<td>"CB"</td>
<td>Hugo Antonio Toro Restrepo "CDT Bochica"</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>"DG"</td>
<td>Danilo Gonzales "Coronel"</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>46</td>
<td>"LFA"</td>
<td>Luis Fernando Acosta "nangas"</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>47</td>
<td>"WR"</td>
<td>William Rodríguez</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>"NP"</td>
<td>Nicol Parra</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>49</td>
<td>"FDC"</td>
<td>Fernando Cifuentes</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>"JRG"</td>
<td>Jorge Cifuentes "Jorge"</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>51</td>
<td>"PCH"</td>
<td>"Pachito"</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>52</td>
<td>"JLP"</td>
<td>Julio Lopez Peña "Julito"</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>53</td>
<td>"AUS"</td>
<td>Angel Uribe Serna "Babasa"</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>"JMH"</td>
<td>Jose Manuel Herrera "El Invalido"</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>"LVV"</td>
<td>Leonidas Vargas "El viejo"</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>56</td>
<td>"VCE"</td>
<td>Victor Carranza "El esmeraldero"</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>57</td>
<td>"OSC"</td>
<td>Orlando Sanchez Cristancho "Martin"</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Código</td>
<td>Nombre</td>
<td>Apodo</td>
<td>Temporada</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>58</td>
<td>"TM"</td>
<td>Juan Carlos Velazco</td>
<td>"Trompa de Marrano"</td>
<td>3</td>
</tr>
<tr>
<td>59</td>
<td>"ACA"</td>
<td>Amado Carrillo</td>
<td>"El Señor de los Cielos"</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>"MAP"</td>
<td>Manuel Aguirre</td>
<td>"El Promotor"</td>
<td>6</td>
</tr>
<tr>
<td>61</td>
<td>"RM"</td>
<td>Richard Martínez</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>62</td>
<td>"LF"</td>
<td>Andrés López</td>
<td>"La Flor"</td>
<td>3</td>
</tr>
<tr>
<td>63</td>
<td>"MRL"</td>
<td>Marielli</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>"SSR"</td>
<td>"Salserin"</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>65</td>
<td>"NJA"</td>
<td>Jorge Eliecer Asprilla</td>
<td>"Negro"</td>
<td>3</td>
</tr>
<tr>
<td>66</td>
<td>"MPZ"</td>
<td>Milton Perlaza</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>67</td>
<td>"VCA"</td>
<td>Vicente Carrillo</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>68</td>
<td>"NC"</td>
<td>Nacho Coronel</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>"LBT"</td>
<td>"Los Beltrán"</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>70</td>
<td>"FH"</td>
<td>Fernando Henao</td>
<td>"Fernandito"</td>
<td>3</td>
</tr>
<tr>
<td>71</td>
<td>"LPD"</td>
<td>"Loma Pelada"</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>72</td>
<td>"CAR"</td>
<td>Carlos Alberto Renteria</td>
<td>"Beto"</td>
<td>3</td>
</tr>
<tr>
<td>73</td>
<td>"LAG"</td>
<td>Luis Alfredo Guzman</td>
<td>"Maracuya"</td>
<td>3</td>
</tr>
<tr>
<td>74</td>
<td>"MS"</td>
<td>Miguel Solano</td>
<td>"Miguelito"</td>
<td>3</td>
</tr>
<tr>
<td>75</td>
<td>"AMH"</td>
<td>Arcangel "El Mocho"</td>
<td>Henao</td>
<td>3</td>
</tr>
<tr>
<td>76</td>
<td>"EMQ"</td>
<td>Edgar Marroquin</td>
<td>"Marroco"</td>
<td>2</td>
</tr>
<tr>
<td>77</td>
<td>"JMP"</td>
<td>Jose Manuel Puello</td>
<td>"Chepe Puello"</td>
<td>3</td>
</tr>
<tr>
<td>78</td>
<td>"JF"</td>
<td>Julio Cesar Correa</td>
<td>"Julio Fierro"</td>
<td>4</td>
</tr>
<tr>
<td>79</td>
<td>"NB"</td>
<td>Nicolás Bergonzoli</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>80</td>
<td>"RCJ"</td>
<td>Raúl Castro "Jimmy Aloha"</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>"VIM"</td>
<td>Vladimil Illich Mosquera "Don Vla"</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>82</td>
<td>"JFL"</td>
<td>Jose Fernando Lopera</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>83</td>
<td>"AH"</td>
<td>Alvaro Herrera</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>84</td>
<td>"WH"</td>
<td>William Herrera</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>85</td>
<td>"JBF"</td>
<td>Jorge Botero "Fofe"</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>86</td>
<td>"JRM"</td>
<td>Jorge Rodríguez "mono"</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>87</td>
<td>"EM"</td>
<td>Carlos Ramón Zapata "El Medico"</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>88</td>
<td>"DFC"</td>
<td>Dagoberto Flórez "Chuma"</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>89</td>
<td>"FRC"</td>
<td>Francisco Cifuentes</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>"EMC"</td>
<td>Eduardo Martínez "Costeño"</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>91</td>
<td>"JAE"</td>
<td>Jaime Amaya "El mono"</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>92</td>
<td>"JRQ"</td>
<td>Jose Ramon Quintero "La Remaquina"</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>93</td>
<td>"JMG"</td>
<td>Jairo Garcia "El Mocho"</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>94</td>
<td>"MJJ"</td>
<td>"Mono Jojoy"</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>95</td>
<td>"ABJ"</td>
<td>Alejandro Bernal "Juvenal"</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>96</td>
<td>"LH"</td>
<td>Lorena Henao</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>97</td>
<td>"JFU"</td>
<td>Julio Fabio Urdinola</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>98</td>
<td>"CMJ"</td>
<td>Carlos Mario Jimenez "Macaco"</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>99</td>
<td>"PPY"</td>
<td>"Pipe Montoya" jefe de los "yiyos"</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>"JCM"</td>
<td>Juan Carlos Montoya</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>"ATB"</td>
<td>Arnulfo Triana "botalon"</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>nº</td>
<td>Apellido</td>
<td>Nombre</td>
<td>Alias</td>
<td>Capítulo</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>102</td>
<td>"OGC"</td>
<td>Omar Garcia</td>
<td>"Capachivo" o "Comandante Lucas"</td>
<td>3</td>
</tr>
<tr>
<td>103</td>
<td>"DRR"</td>
<td>Diego Restrepo</td>
<td>"Rastrojo"</td>
<td>3</td>
</tr>
<tr>
<td>104</td>
<td>"CBZ"</td>
<td>"Cabezón"</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>105</td>
<td>"CBT"</td>
<td>Javier Antonio Calle</td>
<td>"Combatiente"</td>
<td>3</td>
</tr>
<tr>
<td>106</td>
<td>"GPP"</td>
<td>Gabriel Puerta Parra</td>
<td>"Doctor Parra"</td>
<td>3</td>
</tr>
<tr>
<td>107</td>
<td>"JAL"</td>
<td>Jairo Ignacio Lenis</td>
<td>"Viejo Verde"</td>
<td>3</td>
</tr>
<tr>
<td>108</td>
<td>"PNP"</td>
<td>Pedro Nel Pineda</td>
<td>"Pispis"</td>
<td>3</td>
</tr>
<tr>
<td>109</td>
<td>"GRS"</td>
<td>Giraldo Rodriguez</td>
<td>"El Señor de la Camisa"</td>
<td>3</td>
</tr>
<tr>
<td>110</td>
<td>"JCN"</td>
<td>Jhony Cano</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>111</td>
<td>"OSZ"</td>
<td>Orlando Sandoval Zuluaga</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>112</td>
<td>"ARM"</td>
<td>Jose Aldemar Rendon</td>
<td>"Mechas"</td>
<td>3</td>
</tr>
<tr>
<td>113</td>
<td>"MAM"</td>
<td>Miguel Angel Mejia</td>
<td>"Los mellizos"</td>
<td>4</td>
</tr>
<tr>
<td>114</td>
<td>"VMM"</td>
<td>Victor Manuel Mejia</td>
<td>"Los mellizos"</td>
<td>4</td>
</tr>
<tr>
<td>115</td>
<td>"SMC"</td>
<td>Salvatore Mancuso</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>116</td>
<td>"RCV"</td>
<td>Ramiro "Cuco" Vanoy</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>117</td>
<td>"RTP"</td>
<td>Rodrigo Tovar Pupo</td>
<td>"Jorge 40"</td>
<td>4</td>
</tr>
<tr>
<td>118</td>
<td>"JZL"</td>
<td>Javier Zuluaga Lindo</td>
<td>"gordolindo"</td>
<td>4</td>
</tr>
<tr>
<td>119</td>
<td>"RBQ"</td>
<td>"Rebusque"</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>120</td>
<td>"IGN"</td>
<td>Jorge Iván Urdinola</td>
<td>"La Iguana"</td>
<td>3</td>
</tr>
<tr>
<td>121</td>
<td>"JJY"</td>
<td>John Jairo Londoño</td>
<td>"Yiyo"</td>
<td>3</td>
</tr>
<tr>
<td>122</td>
<td>"JLY"</td>
<td>Jaime Londoño</td>
<td>"Yiyo"</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Anexo 2. Resultado medición balance evento 1

Total inconsistency measure: 0.00000

Partitions with total inconsistency measure 0.00000 found 1 times. Attraction rate = 0.10000.
Proportional reduction of error = 0.33333.
Time spent: 0:00:00

Fuente: Elaboración propia.

Anexo 3. Resultado medición balance evento 2

Total inconsistency measure: 3.00000

Partitions with total inconsistency measure 3.00000 found 1 times. Attraction rate = 0.10000.
Proportional reduction of error = 0.86957.
Time spent: 0:00:00

Fuente: Elaboración propia.

Anexo 4. Resultado medición balance evento 3

Total inconsistency measure: 3.00000

Partitions with total inconsistency measure 3.00000 found 1 times. Attraction rate = 0.10000.
Proportional reduction of error = 0.86957.
Time spent: 0:00:00

Fuente: Elaboración propia.

Anexo 5. Resultado medición balance evento 4

Total inconsistency measure: 7.00000

Partitions with total inconsistency measure 7.00000 found 1 times. Attraction rate = 0.10000.
Proportional reduction of error = 0.69182.
Time spent: 0:00:00

Fuente: Elaboración propia.

Anexo 6. Resultado medición balance evento 5

Total inconsistency measure: 19.00000

Partitions with total inconsistency measure 19.00000 found 1 times. Attraction rate = 0.10000.
Proportional reduction of error = 0.70769.
Time spent: 0:00:01

Fuente: Elaboración propia.

Anexo 7. Resultado medición balance evento 6

Total inconsistency measure: 15.00000

Partitions with total inconsistency measure 15.00000 found 1 times. Attraction rate = 0.10000.
Proportional reduction of error = 0.78571.
Time spent: 0:00:01

Fuente: Elaboración propia.
Anexo 8. Resultado medición balance evento 7

<table>
<thead>
<tr>
<th>Total inconsistency measure: 12.00000</th>
</tr>
</thead>
</table>

Partitions with total inconsistency measure 12.00000 found 1 times. Attraction rate = 0.10000. Proportional reduction of error = 0.82057.

Time spent: 0:00:01

Fuente: Elaboración propia.
Anexo 9. Grafo de la red en el evento 2

Fuente: Elaboración propia.
Anexo 9. Grafo de la red en el evento 3

Fuente: Elaboración propia.
Anexo 11. Grafo de la red en el evento 4

Fuente: Elaboración propia.
Anexo 12. Grafo de la red en el evento 5

Fuente: Elaboración propia.
Anexo 13. Grafo de la red en el evento 6

Fuente: Elaboración propia.
Anexo 14. Grafo de la red en el evento 7

Fuente: Elaboración propia.
Anexo 15. Vista previa de la matriz de signos evento 1

Fuente: Elaboración propia.

Anexo 16. Vista previa de la matriz de signos evento 3

Fuente: Elaboración propia.
Anexo 17. Vista previa de la matriz de signos evento 7

Fuente: Elaboración propia.

En los anteriores anexos (15-17), se presenta una vista reducida de la matriz de signos de los eventos 1,3 y 7, en donde los cuadros negros representan vínculos de amistad, los cuadros rojos los vínculos de hostilidad y los cuadros blancos la ausencia de vínculos. Para ver con mayor detalle la información de nodos y enlaces dirigirse a los datos en el siguiente enlace: https://goo.gl/bhMCD8