
Vol. XIX, No 2, Diciembre (2011)
Matemáticas: 3–14

Matemáticas:
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Abstract
A semi-linear second order ODE under a nonlinear two-point boundary condition is considered.
Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional
shooting argument which allows to obtain solutions for some specific situations by the use of
Poincaré-Miranda’s theorem. Finally, we apply this result combined with the method of upper
and lower solutions and develop an iterative sequence that converges to a solution of the problem.
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1 Introduction

We study the semi-linear second order ODE

u′′(t) + g(t, u(t), u′(t)) = 0, 0 < t < T (1)

under a nonlinear two-point boundary condition.

Problem (1) under various boundary conditions has been studied by many
authors. In the pioneering work of Picard [18], the existence of a solution for the
Dirichlet problem was proved by the well-known method of successive approxi-
mations, assuming that g is Lipschitz and T is small. These conditions have been
improved by Hamel [9], for the special case of a forced pendulum equation (see
also [13], [14]). For general g = g(·, u), the variational approach has been em-
ployed already in 1915 by Lichtenstein [12]. However, when g depends on u′ the
problem has non-variational structure, and different techniques are required. As
a historical antecedent of the topological methods, we may mention the shooting
method introduced in 1905 by Severini [20]; later on, more abstract topologi-
cal tools have been applied, such as the Leray-Schauder degree theory. For an
overview of the use of topological methods to this kind of problems, we refer the
reader to [15].

The above-mentioned two-point boundary conditions, as well as some other
standard ones, such as the Neumann or the Sturm-Liouville conditions, are linear;
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it is worthy to mention, however, that the general nonlinear case

φ(u(0), u(T ), u′(0), u′(T )) = 0, (2)

where φ : R4 → R is continuous is very important in applications and, in recent
years, a considerable number of works have been developed in this direction.

We shall study the existence of solutions of (1) under a particular case of
condition (2): namely, nonlinear boundary conditions of the type

u′(0) = f0(u(0)), u′(T ) = fT (u(T )) (3)

where f0, fT : R → R are given continuous functions. The special case fi(x) =
aix+bi for i = 0, T corresponds to the Sturm-Liouville conditions, and Neumann
conditions when a0 = aT = 0. Our interest in (3) relies on some models in
nonlinear beam theory, usually leading to fourth order problems [7], but that
admit second order analogues (see e.g. [19]). The results in the present paper
complement and extend those in [1].

The paper is organized as follows. In the second section, we impose a growth
condition on g, which allows to prove the unique solvability of the associated
Dirichlet problem. Furthermore, we prove that the trace mapping Tr : S → R2

given by Tr(u) = (u(0), u(T )), where

S := {u ∈ H2(0, T ) : u′′(t) + g(t, u(t), u′(t)) = 0} (4)

is a homeomorphism for the H2-norm.

Then, we define a two-dimensional shooting argument, which proves to be
successful with the aid of the Poincaré-Miranda theorem (see e.g. [11]) in some
particular situations, which include the Sturm-Liouville boundary conditions.
This generalizes some of the results in [2], and constitutes the main tool for our
iterative method for problem (1)-(3), developed in the third section.

Our method, based on the existence of an ordered couple (α, β) of a lower
and an upper solution, has been successfully applied to different boundary value
problems when g does not depend on u′. For general g, existence results can still
be obtained if one assumes a Nagumo-Bernstein type condition (see [3], [16])).
However, these results are usually proved by fixed point or degree arguments and,
in consequence, they are non-constructive.

We shall assume instead a Lipschitz condition on u′, which is more restrictive,
but allows the construction of a non-increasing (resp. non-decreasing) sequence of
upper (lower) solutions that converges to a solution of the problem. Our method
is slightly different from the monotone techniques known in the literature for
linear boundary conditions, see e.g. [4], [17] among others (for upper and lower
solutions in the reversed order, see [10]).
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2 A continuum of solutions of (1)

For simplicity, let us assume that g is continuous, and write it as

g(t, u(t), u′(t)) = r(t)u′(t) + h(t, u(t), u′(t)),

with r ∈W 1,∞(0, T ). We shall assume that h satisfies a global Lipschitz condition
on u′, namely

∣∣∣h(t, u,A)− h(t, u,B)

A−B
∣∣∣ ≤ k < π

T
for A 6= B. (5)

Furthermore, in this section we shall assume the following one-side growth
condition on u:

h(t, u,A)− h(t, v, A)

u− v ≤ c (6)

for u 6= v, where the constant c ∈ R satisfies

c+
kπ

T
<
(π
T

)2
+

1

2
inf

0≤t≤T
r′(t). (7)

Under these assumptions, the set S of solutions of (1) defined by (4) is homeo-
morphic to R2. More precisely,

Theorem 1. Assume that (5) and (6) hold and let x, y ∈ R. Then there exists
a unique solution ux,y of (1) satisfying the non-homogeneous Dirichlet condition

ux,y(0) = x, ux,y(T ) = y

Furthermore, the mapping Tr :
(
S, ‖ · ‖H2

)
→ R2 given by Tr(u) = (u(0), u(T ))

is a homeomorphism.

Proof. For fixed v ∈ H1(0, T ), let u := T v be defined as the unique solution of
the linear problem

u′′ = −[rv′ + h(·, v, v′)]
u(0) = x, u(T ) = y.

It is immediate that T : H1(0, T ) → H1(0, T ) is compact. Moreover, if Sσ :
H2(0, T ) → L2(0, T ) is the semilinear operator defined by Sσu := u′′ + σ[ru′ +
h(·, u, u′)], with σ ∈ [0, 1], then using (6) and (7) it is seen that the following a
priori bound holds for any u, v ∈ H2(0, T ) with u− v ∈ H1

0 (0, T ):

‖u′ − v′‖L2 ≤ µ‖Sσu− Sσv‖L2 (8)

for some constant µ independent of σ.
Hence, if u = σT u for some σ ∈ [0, 1], then setting lx,y(t) = y−x

T t + x we
obtain:

‖u′ − σl′x,y‖L2 ≤ µ‖Sσ(σlx,y)‖L2 ≤ C
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for some constant C depending only on x and y. Existence of solutions follows
from the Leray-Schauder Theorem. Uniqueness is an immediate consequence of
(8) for σ = 1.

Thus, Tr is bijective, and its continuity is clear. On the other hand, if (x, y)→
(x0, y0), then applying (8) to u = ux,y− lx,y and v = ux0,y0− lx0,y0 it is easy to see
that ux,y → ux0,y0 for the H1-norm. As ux,y and ux0,y0 satisfy (1), we conclude
from (5) that also u′′x,y → u′′x0,y0 for the L2-norm and so completes the proof. 2

It is worth noticing that the previous result allows to define a two-dimensional
shooting argument as follows: let Θ : R2 → R2 be defined by

Θ(x, y) = (u′x,y(0)− f0(x), u′x,y(T )− fT (y)).

From the previous theorem, we deduce that Θ is continuous, and it is clear that,
if Θ(x, y) = (0, 0), then ux,y is a solution of the problem.

Example 1. Assume that (5) and (6) hold, and that

h(t, u, 0)sgn(u) < 0 for |u| ≥M, (9)

f0(M+) ≥ 0 ≥ f0(M−), fT (M+) ≤ 0 ≤ fT (M−) (10)

for some constants M− ≤ −M < M ≤ M+. Then (1)-(3) admits at least one
solution.

In particular, the result holds for the Sturm-Liouville conditions

u′(0) = a0u(0) + b0, u′(T ) = aTu(T ) + bT , a0 > 0 > aT . (11)

Furthermore, in this case the solution is unique, provided that c < 0 in (6).

Indeed, it follows from (9) that ux,y cannot attain in (0, T ) neither a maximum
value larger than M , nor a minimum value smaller than −M . Moreover, for
M− ≤ y ≤M+ we obtain:

uM+,y(0) = M+ ≥ y = uM+,y(T ), uM−,y(0) = M− ≤ y = uM−,y(T ).

Thus, u′M+,y(0) ≤ 0 ≤ u′M−,y(0), and hence Θ1(M+, y) ≤ 0 ≤ Θ1(M−, y). In the

same way, it follows that Θ2(x,M+) ≥ 0 ≥ Θ2(x,M−) for M− ≤ x ≤ M+. By
the Poincaré-Miranda’s generalized intermediate value theorem, we conclude that
Θ has at least one zero (x, y) ∈ [M−,M+]× [M−,M+].

On the other hand, if u and v are solutions of (1)-(11), then

(u− v)′′ + (r + ψ)(u− v)′ + h(·, u, v′)− h(·, v, v′) = 0

where

ψ =
h(·, u, u′)− h(·, u, v′)

u′ − v′ ∈ L∞(0, T ).
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Next, take p(t) = e
∫ t
0 (r(s)+ψ(s)) ds, multiply the previous equality by (u − v)p and

integrate. We obtain:

0 = p(u′ − v′)(u− v)
∣∣∣
T

0
−
∫ T

0
p(u′ − v′)2 +

∫ T

0
p[h(·, u, v′)− h(·, v, v′)](u− v)

≤ p(T )aT (u− v)2(T )− a0(u− v)2(0)−
∫ T

0
p(u′ − v′)2 + c

∫ T

0
p(u− v)2.

Hence, for c < 0 it is seen that u = v.

3 Iterative sequences of upper and lower solutions

In this section we shall construct solutions of (1) under the two-point boundary
condition (3) by an iterative method, based upon the existence of upper and
lower solutions.

Let us recall that (α, β) is an ordered couple of a lower and an upper solution
for (1) if α ≤ β and

α′′ + g(·, α, α′) ≥ 0 ≥ β′′ + g(·, β, β′).

Existence results under various boundary conditions in presence of an ordered
couple of a lower and an upper solution are known (see e. g. [6]). In our
particular case, we shall assume the boundary constraints:

α′(0)− f0(α(0)) ≥ 0 ≥ β′(0)− f0(β(0)),

α′(T )− fT (α(T )) ≤ 0 ≤ β′(T )− fT (β(T ))

and a Nagumo type condition adapted from [5]:

|g(t, u, v)| ≤ ψ(|v|), for α(t) ≤ u ≤ β(t),m ≤ |v| ≤M (12)

where ψ : [0,+∞)→ (0,+∞) is continuous and satisfies:

∫ M

m

1

ψ(t)
dt > T,

and

m = min

{ |α(0)− β(T )|
T

,
|α(T )− β(0)|

T
, max
α(0)≤s≤β(0)

|f0(s)|, max
α(T )≤s≤β(T )

|fT (s)|
}

M > max{‖α′‖∞, ‖β′‖∞,m}.
Then, the following existence result can be obtained as in [1]:

Theorem 2. Assume there exists an ordered couple (α, β) of a lower and an
upper solution as before, and that (12) holds. Then the boundary value problem
(1)-(3) admits at least one solution u, with α ≤ u ≤ β.
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Sketch of the proof. The proof follows the outline of the standard results on the
subject. Let P (t, u) = max{α(t),min{u, β(t)}} and Q(v) = sgn(v)min{|v|,M},
and apply Schauder’s Theorem in order to obtain a solution of the problem

u′′(t)− λu(t) = −g(t, P (t, u(t)), Q(u′(t)))− λP (t, u(t)),

u′(0) = f0(P (0, u(0)), u′(T ) = fT (P (T, u(T ))

for some fixed λ > 0. It is easy to see that α ≤ u ≤ β, and hence P (t, u(t)) = u(t)
for every t. Furthermore, if we suppose that for example u′(t1) = M , then there
exists t0 such that u′(t0) = m and m < u′(t) < M for t between t0 and t1. Hence

T <

∫ M

m

1

ψ(s)
ds =

∫ t1

t0

u′′(t)
ψ(u′(t))

dt ≤ |t1 − t0|,

a contradiction. The same conclusion holds if we suppose u′(t1) = −M ; thus,
|u′(t)| < M and the proof is complete.

2

Example 2. The previous result applies when (9) and (10) hold: indeed, in this
case it is clear (M−,M+) is an ordered couple of a lower and an upper solution.
Thus, conditions (5) and (6) in example 1 can be dropped.

Also, we may consider the forced pendulum equation with friction

u′′ + ru′ + sinu = θ,

and assume that the forcing term θ is a measurable function satisfying:

−1 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ].

Then α ≡ π
2 and β ≡ 3

2π are respectively a lower and an upper solution. Hence,
(1)-(3) has a solution for any continuous f0 and fT such that

f0

(π
2

)
≤ 0 ≤ f0

(
3π

2

)

and

fT

(π
2

)
≥ 0 ≥ fT

(
3π

2

)
.

Our last result is concerned with the construction of solutions by iteration,
provided that h and f satisfy some stronger assumptions.

Let us firstly establish the following auxiliary lemmas:

Lemma 1. Assume that (5) holds and let λ be a positive constant satisfying

λ ≥ k πT −
(
π
T

)2 − 1
2 infr′. Then for any z, θ ∈ C([0, T ]) the equation

u′′ + ru′ + h(·, z, u′)− λu = θ

is uniquely solvable under the Sturm-Liouville conditions (11). Furthermore, the
mapping K : C([0, T ])2 → C([0, T ]) given by K(z, θ) = u is compact.
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Proof. Existence and uniqueness follow as a particular case of example 1, with
g(·, u, u′) = ru′ + h(·, u, u′), where

h(·, u, u′) = h(·, z, u′)− λu− θ.
Indeed, it is clear that h satisfies (5) and (6) with c = −λ. Moreover,

h(t, u, 0)sgn(u) = (h(t, z(t), 0)− θ(t))sgn(u)− λ|u| < 0

when |u| > ‖h(·, z, 0)− θ‖∞. Thus, (9) is also satisfied.
Let (z, θ) tend to (z0, θ0), and set u = K(z, θ), u0 = K(z0, θ0). Then

(u− u0)′′ + (r + ψ)(u− u0)′ − λ(u− u0) = h(·, z, u′0)− h(·, z0, u
′
0) + θ − θ0

where ψ =
h(·,z,u′)−h(·,z,u′0)

u′−u′0
. Hence, continuity of K is a consequence of the fol-

lowing estimate, which is valid for any w satisfying (11) with b0 = bT = 0 and
some constant c depending only on k:

‖w‖H1 ≤ c‖w′′ + (r + ψ)w′ − λw‖L2 .

Indeed, this is easily deduced by applying the Cauchy-Schwartz inequality to the

integral
∫ T

0 pLw.w, where Lw = w′′ + (r+ψ)w′ − λw and p(t) = e
∫ t
0 (r(s)+ψ(s)) ds,

and the fact that 0 < m ≤ p ≤ M for some m and M depending only on k.
Finally, compactness of K follows from the imbedding H1(0, T ) ↪→ C([0, T ]).

2

Remark 1. In the previous proof, an analogous estimate can be also obtained for
the H2-norm of w. This implies the compactness of K, but now regarded as an
operator from C([0, T ])2 to C1([0, T ]). More generally, one might consider also
ai and bi as variables for i = 0, T : in this case, K could be seen as a compact
operator from R4 × C([0, T ])2 to C1([0, T ]).

Lemma 2. Let φ ∈ L∞(0, T ) and assume that w′′ + φw′ − λw ≥ 0 (in the weak
sense) for some λ ≥ 0, and

w′(0)− a0w(0) ≥ 0 ≥ w′(T )− aTw(T )

with a0 > 0 > aT . Then w ≤ 0.

Proof. If w(0), w(T ) ≤ 0, the result is the well-known maximum principle for
Dirichlet conditions.

If for example w(0) > 0, then restricting w up to its first zero if necessary, it

suffices to consider only the case w ≥ 0. Taking p(t) = e
∫ t
0 φ(s) ds, it is observed

that (pw′)′ ≥ λpw ≥ 0. Thus, pw′ is nondecreasing on [0, T ], and hence

0 ≥ p(T )aTw(T ) ≥ p(T )w′(T ) ≥ p(0)w′(0) ≥ p(0)a0w(0) > 0,

a contradiction. The proof is similar when w(T ) > 0. 2

In order to define our iterative scheme, we shall assume that f0 and fT satisfy
a one-side Lipschitz condition:
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(F ) There exists a positive constant R such that

f0(y)− f0(x) ≤ R(y − x)

if α(0) ≤ x < y ≤ β(0), and

fT (y)− fT (x) ≥ −R(y − x)

if α(T ) ≤ x < y ≤ β(T ).

In virtue of Lemma 1, if (5) holds then for λ = min{R, k πT −
(
π
T

)2 − 1
2 infr′},

we may define the compact operator T : C([0, T ])→ C([0, T ]) given by T v = u,
where u is the unique solution of the problem

u′′ + ru′ + h(·, v, u′)− λu = −λv

satisfying the following Sturm-Liouville condition:

u′(0)−Ru(0) = f0(v(0))−Rv(0), u′(T ) +Ru(T ) = fT (v(T )) +Rv(T ).

From Remark 1, we observe, moreover, that the set T ({v : α ≤ v ≤ β}) is
bounded for the C1-norm. In particular, this implies the existence of a constant
M = M(R) such that if u = T v for some v lying between α and β, then ‖u′‖∞ ≤
M . This suggests to consider the following Lipschitz condition on h:

(H)

|h(t, u,A)− h(t, v, A)| ≤ R|u− v|

for u, v such that α(t) ≤ u < v ≤ β(t) and |A| ≤M(R).

Remark 2. Conditions (F ) and (H) are trivially satisfied if f0, fT and h are
C1 functions, and ∂h

∂u is bounded with respect to u′.

Theorem 3. Assume there exists an ordered couple (α, β) of a lower and an
upper solution as before. Further, assume that (5), (H) and (F ) hold. Set λ as
before, and define the sequences {un} and {un} recursively by

u0 = α, u0 = β

and

un+1 = T un, un+1 = T un
Then (un un) is an ordered couple of a lower and an upper solution. Furthermore,
{un} (resp. {un}) is non-increasing (non-decreasing) and converges to a solution
of the problem.
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Proof. Let us firstly prove that α ≤ u1 ≤ β. From the definition,

u′′1 + ru′1 + h(·, β, u′1)− λu1 = −λβ ≥ −λβ + β′′ + rβ′ + h(·, β, β′).

Hence, setting

ψ =
h(·, β, u′1)− h(·, β, β′)

u′1 − β′
∈ L∞(0, T )

we deduce that

(u1 − β)′′ + (r + ψ)(u1 − β)′ − λ(u1 − β) ≥ 0.

On the other hand,

u′1(0)−Ru1(0) = f0(β(0))−Rβ(0)

and
u′1(T ) +Ru1(T ) = fT (β(T )) +Rβ(T ).

Thus,

(u1 − β)′(0)−R(u1 − β)(0) = 0 = (u1 − β)′(T )−R(u1 − β)(T ),

and from Lemma 2 we obtain that u1 ≤ β.
In the same way,

u′′1 + ru′1 + h(·, β, u′1)− λu1 ≤ −λβ + α′′ + rα′ + h(·, α, α′)
and hence

(u1 − α)′′ + (r + ψ)(u1 − α)′ − λ(u1 − α) ≥ 0

where

ψ =
h(·, α, u′1)− h(·, α, α′)

u′1 − α′
∈ L∞(0, T ).

Also
u′1(0)−Ru1(0) = f0(β(0))−Rβ(0) ≤ f0(α(0))−Rα(0)

and
u′1(T ) +Ru1(T ) = fT (β(T )) +Rβ(T ) ≥ fT (α(T )) +Rα(T ),

and we conclude that u1 ≥ α.
On the other hand,

u′′1 +ru′1+h(·, u1, u
′
1) = (λ−R)(u1−β)+[h(·, u1, u

′
1)+Ru1]−[h(·, β, u′1)+Rβ] ≤ 0,

and we deduce that u1 is an upper solution of the problem. Inductively, it follows
that un is an upper solution for every n, with α ≤ un+1 ≤ un, which by Dini’s
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theorem implies that un converges uniformly to a function u. From the definition
of {un},

u′′n+1 + ru′n+1 + h(·, un, u′n+1)→ 0

uniformly. Moreover, from Lemma 1 and Remark 1 we know that {un} is bounded
in H2(0, T ), and it follows easily that

u′′ + ru′ + h(·, u, u′) = 0.

Thus, u is a solution of the problem. The proof for un is analogous. Moreover, if
we assume as inductive hypothesis that un ≤ un, then

u′′n+1 + ru′n+1 + h(·, un, u′n+1)− λun+1 = −λun
≤ −λun = u′′n+1 + ru′n+1 + h(·, un, u′n+1)− λun+1.

In the same way as before, we may define

ψ =
h(·, un, u′n+1)− h(·, un, u′n+1)

u′n+1 − u′n+1

∈ L∞(0, T ),

and hence for w = un+1 − un+1 we deduce:

w′′ + (r + ψ)w′ − λw ≤ h(·, un, u′n+1)− h(·, un, u′n+1) ≤ −R(un − un) ≤ −Rw.

From Lemma 2, we conclude that w ≥ 0, i.e. un+1 ≤ un+1. 2

Remark 3. It is interesting to observe that, even if (5) is somewhat too restric-
tive, some condition regarding the growth of h with respect to u′ is required. We
may recall, for instance, the following example by Habets and Pouso [8] for the
mean curvature operator:

(
u′√

1 + u′2

)′
= u+ a,

where the function a ∈ L∞(0, T ) is defined by

a(t) = 2[χ[0,T
2

](t)− χ(T
2
,T ](t)] =

{
2 0 ≤ t ≤ T

2

−2 T
2 < t ≤ T

Under conditions (11) with b0 = bT = 0, it is seen that α = −3 and β = 3 is an
ordered couple of a lower and an upper solution, but the equation has no solutions
when T > 2

√
2. However, here

h(·, u, u′) = (u+ a)
(√

1 + u′2
)3/2

,

and (9) is satisfied. This explains the need of the Nagumo condition, or at least
a similar one, in Theorem 2.
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