Show simple item record

dc.contributor.authorPerdomo, Oscarspa
dc.date.accessioned2011-10-13T19:52:06Z
dc.date.available2011-10-13T19:52:06Z
dc.date.issued2011-10-13
dc.identifier.urihttp://hdl.handle.net/10893/1762
dc.description.abstractLet g be a riemannian metric on [S.sup.2] x [S.sup.2]. In this paper we will show that if ([S.sup.2] x [S.sup.2], g) contains a totally geodesic torus, then [S.sup.2] x [S.sup.2] does not have positive sectional curvature. Then, we use the formula for the second variation of energy to rule out a family of metrics from having positive sectional curvature.spa
dc.language.isoenspa
dc.subjectRiemannian metricspa
dc.subjectTotally geodesic surfacesspa
dc.subjectHopf's conjecturespa
dc.titleTotally geodesic surfaces and the Hopf's conjecturespa
dc.typeArticlespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record