dc.contributor.author | Perdomo, Oscar | spa |
dc.date.accessioned | 2011-10-13T19:52:06Z | |
dc.date.available | 2011-10-13T19:52:06Z | |
dc.date.issued | 2011-10-13 | |
dc.identifier.uri | http://hdl.handle.net/10893/1762 | |
dc.description.abstract | Let g be a riemannian metric on [S.sup.2] x [S.sup.2]. In this paper we will show that if ([S.sup.2] x [S.sup.2], g) contains a totally geodesic torus, then [S.sup.2] x [S.sup.2] does not have positive sectional curvature. Then, we use the formula for the second variation of energy to rule out a family of metrics from having positive sectional curvature. | spa |
dc.language.iso | en | spa |
dc.subject | Riemannian metric | spa |
dc.subject | Totally geodesic surfaces | spa |
dc.subject | Hopf's conjecture | spa |
dc.title | Totally geodesic surfaces and the Hopf's conjecture | spa |
dc.type | Article | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |